Excited States of the Nucleon in Lattice QCD

Md. Selim Mahbub

Collaborators: Alan Ó Cais, Waseem Kamleh, Ben G. Lasscock, Derek B. Leinweber and Anthony G. Williams

> CSSM, University of Adelaide Adelaide

Md. Selim Mahbub Excited States of the Nucleon in Lattice QCD

< 同 > < 回 > < 回 >

Outline

Md. Selim Mahbub Excited States of the Nucleon in Lattice QCD

프 🖌 🛪 프 🕨

æ

2 point Correlation Function

• Two point correlation function:

$$G_{ij}(t,\vec{\rho}) = \sum_{\vec{x}} e^{-i\vec{p}.\vec{x}} \langle \Omega | T\{\chi_i(x)\bar{\chi}_j(0)\} | \Omega \rangle.$$
(1)

Inserting completeness

$$\sum_{B,ec{p'},s} |B,ec{p'},s
angle\langle B,ec{p'},s|=I$$

Then

$$G_{ij}(t,\vec{p}) = \sum_{B^{+}} \lambda_{B^{+}} \bar{\lambda}_{B^{+}} e^{-E_{B^{+}}t} \frac{\gamma \cdot p_{B^{+}} + M_{B^{+}}}{2E_{B^{+}}} + \sum_{B^{-}} \lambda_{B^{-}} \bar{\lambda}_{B^{-}} e^{-E_{B^{-}}t} \frac{\gamma \cdot p_{B^{-}} - M_{B^{-}}}{2E_{B^{-}}}.$$
 (2)

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

æ

λ_{B[±]}, λ
_{B[±]} are the couplings of χ(0) and χ
(0) with |B[±]⟩ defined by

$$egin{aligned} &\langle \Omega | \chi(\mathbf{0}) | \mathcal{B}^+, ec{p}, oldsymbol{s}
angle &= \lambda_{\mathcal{B}^+} \sqrt{rac{M_{\mathcal{B}^+}}{E_{\mathcal{B}^+}}} u_{\mathcal{B}^+}(ec{p}, oldsymbol{s}), \ &\langle \mathcal{B}^+, ec{p}, oldsymbol{s} | ar{\chi}(\mathbf{0}) | \Omega
angle &= ar{\lambda}_{\mathcal{B}^+} \sqrt{rac{M_{\mathcal{B}^+}}{E_{\mathcal{B}^+}}} ar{u}_{\mathcal{B}^+}(ec{p}, oldsymbol{s}), \end{aligned}$$

and for the negative parity states,

$$egin{aligned} &\langle \Omega | \chi(\mathbf{0}) | m{B}^-, m{ec{p}}, m{s}
angle &= \lambda_{B^-} \sqrt{rac{M_{B^-}}{E_{B^-}}} \gamma_5 u_{B^-}(m{ec{p}}, m{s}), \ &\langle m{B}^-, m{ec{p}}, m{s} | ar{\chi}(\mathbf{0}) | \Omega
angle &= -ar{\lambda}_{B^-} \sqrt{rac{M_{B^-}}{E_{B^-}}} ar{u}_{B^-}(m{ec{p}}, m{s}) \gamma_5 . \end{aligned}$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

3

2 point Correlation Function

• At
$$\vec{p} = 0$$

$$G_{ij}^{\pm}(t,\vec{0}) = \operatorname{Tr}_{\mathrm{sp}}[\Gamma_{\pm}G_{ij}(t,\vec{0})]$$
$$= \sum_{B^{\pm}} \lambda_{i}^{\pm}\bar{\lambda}_{j}^{\pm} e^{-M_{B^{\pm}}t}.$$
(3)

$$\Gamma_{\pm}=\frac{1}{2}(1\pm\gamma_0).$$

And

$$G_{jj}^{\pm}(t,\vec{0}) \stackrel{t\to\infty}{=} \lambda_{j0}^{\pm}\bar{\lambda}_{j0}^{\pm}e^{-M_{0\pm}t}.$$
 (4)

▲ロト ▲圖ト ▲温ト ▲温ト

2 point Correlation Function

• Interpolators:

$$egin{aligned} \chi_1(x) &= \epsilon^{abc}(u^{Ta}(x)C\gamma_5d^b(x))u^c(x)\,, \ \chi_2(x) &= \epsilon^{abc}(u^{Ta}(x)Cd^b(x))\gamma_5u^c(x)\,, \ \chi_4(x) &= \epsilon^{abc}(u^{Ta}(x)C\gamma_5\gamma_4d^b(x))u^c(x)\,. \end{aligned}$$

ъ

Variational Method

• Consider N interpolating fields, then

$$\bar{\phi}^{\alpha} = \sum_{i=1}^{N} u_i^{\alpha} \bar{\chi}_i,$$
$$\phi^{\alpha} = \sum_{i=1}^{N} v_i^{\alpha} \chi_i,$$

such that,

$$\langle \boldsymbol{B}_{\!\beta}, \boldsymbol{p}, \boldsymbol{s} | \bar{\phi}^{lpha} | \Omega
angle = \delta_{lpha eta} \bar{\boldsymbol{z}}^{lpha} \bar{\boldsymbol{u}}(lpha, \boldsymbol{p}, \boldsymbol{s}),$$

$$\langle \Omega | \phi^{\alpha} | B_{\beta}, p, s \rangle = \delta_{\alpha\beta} z^{\alpha} u(\alpha, p, s),$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

- Then a two point correlation function matrix for $\vec{p} = 0$, $G_{ij}(t)u_j^{\alpha} = (\sum_{\vec{x}} \operatorname{Tr}_{\operatorname{sp}}\{\Gamma_{\pm}\langle \Omega | \chi_i \bar{\chi}_j | \Omega \rangle\})u_j^{\alpha}$ $= \lambda_i^{\alpha} \bar{z}^{\alpha} e^{-m_{\alpha} t}.$ (5)
- There is no sum over α
- t dependence only in the exponential term

< ロ > < 同 > < 回 > < 回 > < □ > <

э

• Then one can have a recurrence relation at time $(t + \triangle t)$,

$$G_{ij}(t+ riangle t)u_j^{lpha}=e^{-m_{lpha} riangle t}G_{ij}(t)u_j^{lpha}.$$

• Multiplying by $[G_{ij}(t)]^{-1}$ from left,

$$[(G(t))^{-1}G(t+\bigtriangleup t)]_{ij}u_j^{\alpha}=c^{\alpha}u_i^{\alpha}, \qquad (6)$$

- where $c^{\alpha} = e^{-m_{\alpha} \triangle t}$ is the eigenvalue.
- Similarly, it can also be solved for the left eigenvalue equation for ν^α eigenvector,

$$\mathbf{v}_{i}^{\alpha}[\mathbf{G}(t+\bigtriangleup t)(\mathbf{G}(t))^{-1}]_{ij}=\mathbf{c}^{\alpha}\mathbf{v}_{j}^{\alpha}.$$
(7)

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

 The vectors u^α_j and v^α_i diagonalize the correlation matrix at time t and t + △t making the projected correlation matrix,

$$\boldsymbol{v}_{i}^{\alpha}\boldsymbol{G}_{ij}(t)\boldsymbol{u}_{j}^{\beta} = \delta^{\alpha\beta}\boldsymbol{z}^{\alpha}\bar{\boldsymbol{z}}^{\beta}\boldsymbol{e}^{-\boldsymbol{m}_{\alpha}t}.$$
(8)

 The projected correlator, is then analyzed to obtain masses of different states,

$$\boldsymbol{v}_i^{\alpha} \boldsymbol{G}_{ij}^{\pm}(t) \boldsymbol{u}_j^{\alpha} \equiv \boldsymbol{G}_{\pm}^{\alpha}, \tag{9}$$

• We construct the effective mass

$$M_{\rm eff}^{\alpha}(t) = \ln\left(\frac{G_{\pm}^{\alpha}(t,\vec{0})}{G_{\pm}^{\alpha}(t+1,\vec{0})}\right). \tag{10}$$

Simulation Details

- lattice volume $16^3 \times 32$
- lattice spacing 0.127 fm
- We use FLIC fermion action and quenched QCD
- Analysis is performed for 10 different pion masses: 797,729,641,541, 430,380,327,295,249,224 MeV.
- We use varieties of Gaussian smearing sweeps (number of sweeps 1,3,7,12,16,26,35,48,65)
- 2 \times 2, 3 \times 3, 4 \times 4, 6 \times 6 and 8 \times 8 correlation matrices are analyzed
- To analyze data we use fitting robot

伺 ト イ ヨ ト イ ヨ ト -

Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

2x2, for point source, for $\chi_1\chi_2$

Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

Eigenvectors - Point Source, for $\chi_1\chi_2$

Introduction Iso Variational Method Rog Results Lev Conclusion Ro

Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

For 3 \times 3, of $\chi_1\chi_2\chi_4$

Introduction Isolating Excited States of the Nucleon nal Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Eigenvectors - 3×3

Introduction Isolating Excited States of the Nucleon Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Smearing

To create a comprehensive basis of interpolating fields we consider source smearing,

$$\psi_i(x,t) = \sum_{x'} F(x,x') \psi_{i-1}(x',t),$$
 (11)

~

where,

$$F(\mathbf{x}, \mathbf{x}') = (1 - \alpha)\delta_{\mathbf{x}, \mathbf{x}'} + \frac{\alpha}{6} \sum_{\mu=1}^{3} [U_{\mu}(\mathbf{x})\delta_{\mathbf{x}', \mathbf{x}+\hat{\mu}} + U_{\mu}^{\dagger}(\mathbf{x} - \hat{\mu})\delta_{\mathbf{x}', \mathbf{x}-\hat{\mu}}], \qquad (12)$$

Fixing $\alpha = 0.7$, the procedure is repeated $N_{\rm sm}$ times.

< ロ > < 同 > < 回 > < 回 >

Introduction	Isolating Excited States of the Nucleon
Variational Method	Roper Resonance
Results	Level crossing
Conclusion	Roper in dynamical QCD

< 注→

∃ 990

Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

2x2, for smeared source, for $\chi_1\chi_2$

Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

Eigenvectors - Smeared source, for $\chi_1\chi_2$

Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

Smeared Source

Md. Selim Mahbub Excited States of the Nucleon in Lattice QCD

< □ > < 同 >

∃ ► < ∃ ►</p>

э

Introduction Isol Variational Method Rop Results Lev Conclusion Rop

Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

Smeared-Smeared

M.S. Mahbub et al., Phys. Rev. D 80, 054507 (2009), [arXiv:hep-lat/0905.3616].

э

Introduction Isolating Excited States of the Nucleon Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Roper Resonance

- *Roper resonance* (*P*₁₁) is the first positive parity excited state of the nucleon
- Observed in 1960's from πN scattering
- The state is puzzling due to its lower mass (1440 MeV) from its nearest negative parity (S₁₁) excited state (1535 MeV).
- In constituent quark model, Roper state is \approx 100 MeV heavier than the S_{11} (1535 MeV) state.
- This state appeared too high in all previous attempts using variational method in lattice QCD.

< ロ > < 同 > < 回 > < 回 > .

Introduction Isolating Excited States of the Nucleon Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

4x4 bases of $\chi_1\chi_1$

- We use smeared-smeared correlation functions
- Varieties of smearing sweeps

$\textbf{Sweeps} \rightarrow$	1	3	7	12	16	26	35	48			
Basis No. \downarrow		Bases									
1	1	-	7	-	16	-	35	-			
2	-	3	7	-	16	-	35	-			
3	1	-	-	12	-	26	-	48			
4	-	3	-	12	-	26	35	-			
5	-	3	-	12	-	26	-	48			
6	-	-	-	12	16	26	35	-			
7	-	-	7	-	16	-	35	48			

< ロ > < 同 > < 回 > < 回 >

Introduction Variational Method Results

Conclusion R

Isolating Excited States of the Nucleo Roper Resonance Level crossing Roper in dynamical QCD

4x4, For 4th basis (3, 12, 26, 35)

Introduction Isolating Excited States of Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical OCC

4x4 bases of $\chi_1 \overline{\chi_1}$

1	3	7	12	16	26	35	48				
	Bases										
1	-	7	-	16	-	35	-				
-	3	7	-	16	-	35	-				
1	-	-	12	-	26	-	48				
-	3	-	12	-	26	35	-				
-	3	-	12	-	26	-	48				
-	-	-	12	16	26	35	-				
-	-	7	-	16	-	35	48				
	1 - 1 - - -	1 3 1 - - 3 1 - - 3 - 3 - 3 	1 3 7 1 - 7 - 3 7 1 - - - 3 - - 3 - - 3 - - 3 - - 3 - - - - - - - - - - - - -	1 3 7 12 I - 7 - - 3 7 - 1 - - 12 - 3 - 12 - 3 - 12 - 3 - 12 - 3 - 12 - 3 - 12 - 3 - 12 - - 12 - - - 12 - - - 12 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

Md. Selim Mahbub Excited States of the Nucleon in Lattice QCD

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

∃ 990

Introduction Isolating Excited States of the Nucleor Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

For all 4×4 bases

(日) (圖) (E) (E)

æ

Introduction Variational Method Results Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

3 ^r	¹ bas	is (1,12,26,	48)	4 th basis (3,12,26,35)					5 th basis (3,12,26,48)				6 th basis (12,16,26,35)			
t ₁	t ₂	<i>aM</i> (Roper)	$\frac{\chi^2}{dof}$	<i>t</i> ₁	t ₂	<i>aM</i> (Roper)	$\frac{\chi^2}{dof}$	t ₁	t ₂	<i>aM</i> (Roper)	$\frac{\chi^2}{dof}$	<i>t</i> ₁	t ₂	<i>aM</i> (Roper)	$\frac{\chi^2}{dof}$	
7	12	1.456(41)	0.58	7	12	1.465(39)	0.63	7	12	1.451(44)	0.51	7	12	1.454(40)	0.57	
7	12	1.411(43)	0.55	7	12	1.419(41)	0.62	7	12	1.405(46)	0.48	7	12	1.417(39)	0.60	
7	12	1.368(39)	0.54	7	12	1.361(45)	0.60	7	12	1.364(40)	0.53	7	11	1.363(42)	0.68	
7	12	1.307(44)	0.57	7	11	1.298(51)	0.60	7	12	1.305(45)	0.57	7	10	1.308(46)	0.54	
7	11	1.235(50)	0.43	7	11	1.245(51)	0.57	7	11	1.233(51)	0.37	7	11	1.244(52)	0.38	
7	11	1.210(60)	0.42	7	11	1.211(55)	0.58	7	11	1.206(57)	0.38	7	11	1.220(60)	0.49	
7	10	1.163(69)	0.60	7	11	1.165(67)	0.56	7	10	1.164(71)	0.53	7	10	1.184(75)	0.56	
7	10	1.129(82)	0.61	7	10	1.127(81)	0.84	7	10	1.136(82)	0.58	7	10	1.155(85)	0.54	
7	10	1.07(10)	0.56	7	10	1.06(10)	0.95	7	10	1.07(11)	0.68	7	10	1.11(11)	0.63	
7	9	1.04(13)	0.85	7	10	1.01(12)	0.97	7	9	1.05(13)	0.79	7	9	1.10(13)	0.70	

(日)

Introduction Isolating Excited States of the Nucleon Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Roper from 4×4

Mahbub et al., Phys. Lett. B 679, 418 (2009), [arXiv:hep-lat/0906.5433].

Introduction Isola Variational Method Rop Results Leve Conclusion Rop

Isolating Excited States of the Nucleo Roper Resonance Level crossing Roper in dynamical QCD

6x6 bases of $\chi_1 \overline{\chi_1}$

Sweeps \rightarrow	1	3	7	12	16	26	35	48				
Basis No. \downarrow		Bases										
1	1	3	7	12	16	26	-	-				
2	1	3	7	12	16	-	35	-				
3	1	3	7	-	16	26	35	-				
4	1	3	-	12	16	26	-	48				
5	1	-	7	12	16	26	35	-				
6	-	3	7	12	16	26	35	-				

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ -

Introduction Isolating Excited States of the N Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

For all 6x6 bases

< ≥ > < ≥ >

æ

< □ > < 同 >

Introduction Isolating Ex Variational Method Roper Reso Results Level cross Conclusion Roper in dy

Roper Resonance Level crossing Roper in dynamical QCD

6x6 bases of $\chi_1\chi_2$

Sweeps \rightarrow	1	3	7	12	16	26	35	48				
Basis No. ↓		Bases										
1	1	-	-	-	16	-	-	48				
2	-	3	-	12	-	26	-	-				
3	-	3	3 16		-	-	48					
4	-	- 7 - 16		-	35	-						
5			-	12	16	26	-	-				
6	-	-	-	-	16	26	35	-				

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ -

Introduction Isolating Excited States of the Nucleon Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

For all 6x6 bases

Md. Selim Mahbub Excited States of the Nucleon in Lattice QCD

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

Introduction Isolating Excited Sta Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical (

8x8 bases of $\chi_1\chi_2$

Sweeps \rightarrow	1	3	7	12	16	26	35	48			
Basis No. ↓		Bases									
1	1	-	7	-	16	-	35	-			
2	-	-	7	12	16	26	-	-			
3	-	3	-	12	-	26	-	48			
4	-	-	7	12	-	26	35	-			
5	-	-	7	-	16	26	35	-			
6	-	-	7	-	16	-	35	48			
7	-	-	-	12	16	26	35	-			

Md. Selim Mahbub Excited States of the Nucleon in Lattice QCD

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

∃ 990

Introduction Isolating Excited States of the Nuc Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

For all 8x8 bases

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ.

Introduction Isolating Variational Method Roper Re Results Level cro Conclusion Roper in

Roper Resonance Level crossing Roper in dynamical QCD

Story of excited states

Introduction Isolating Excited State Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical Q

Story of excited states

Introduction Isolating Excited States of the Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Story of excited states

Introduction Isolating Excited States of the Nucleo Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Story of excited states

Introduction Isolating Excited States of the Nucleon Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Story of excited states

Introduction Isolating Excited States of the Nucleon Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Story of excited states

Introduction Isolating Excited States of the Nucleor Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

Story of excited states

Introduction Isolating Excited S Variational Method Resentance Results Level crossing Conclusion Rener in dynamica

2 states for 2x2,4x4,6x6,8x8

Isolating Excited States of the Nucleor Roper Resonance Level crossing Roper in dynamical QCD

Roper state: Compilation of existing results

Level crossing between Roper (1440 MeV) P₁₁ and N^{1/2} (1535 MeV) S₁₁ states.

Projected Mass

ъ

Introduction Isolating Excited States of the Nuck Variational Method Roper Resonance Results Level crossing Conclusion Roper in dynamical QCD

3×3 and 4×4 results

Md. Selim Mahbub Excited States of the Nucleon in Lattice QCD

э

Introduction Variational Method Results Isolating Excited States of the Nucleor Roper Resonance Level crossing

lits Lev

Conclusion

Roper (1440 MeV) and $N^{\frac{1}{2}}$ (1535 MeV) states

Introduction Isolating E Variational Method Roper Res Results Level cros Conclusion Roper in d

Isolating Excited States of the Nucleo Roper Resonance Level crossing Roper in dynamical QCD

Roper in dynamical QCD: Simulation details

- Lattice volume: $20^3 \times 40$
- *a* =0.125 fm
- 200 configurations, nf = 2, pion mass = 634 MeV.
- FLIC fermion action

Collaborators: · · · , Peter Moran, · · ·

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction Variational Method Results

Conclusion

Isolating Excited States of the Nucleon Roper Resonance Level crossing Roper in dynamical QCD

Roper in dynamical QCD

Conclusion

- Various dimensions of the correlation matrices have been analyzed.
- Varieties of smearing sweeps have been used in constructing correlation matrices.
- We observed smearing dependency of the excited states given that the ground state is independent on smearing.
- A low-lying Roper state has been identified for the first time using variational method.
- For consistency and reliability check we considered several 4×4 , 6×6 , 8×8 matrices.

伺 とくき とくきと

Conclusion

- We have shown how excited states are split up with the dimension of the correlation matrices.
- We have shown the importance of using smeared-smeared correlation functions and larger correlation matrices for the reliable extraction of excited states mass.
- A level crossing between the Roper (1440 MeV) and N¹/₂ (1535 MeV) states has been observed for the first time in variational approach.
- The Roper results in quenched and dynamical QCD are in very good agreement.

Thanks

Md. Selim Mahbub Excited States of the Nucleon in Lattice QCD

▲□▶▲圖▶▲圖▶▲圖▶ ▲国 シスの