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Introduction

• Following S. Takeda's talk on Monday about 4 flavors

• Phase quenched simulations of grand canonical ensembles

Z|| =
∫

[dU ] eβNpP (U ) |detD(µ;U )|Nf

• Nt = 4 with Spatial Volumes of 63, 62 · 8, 6 · 82 and 83

• 4,000 configurations for 63 and to 20,000 ∼ 40,000 configurations for 83Suscep<bility&of&quark&number�
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We observed weak volume scaling.
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Assume a double-Gaussian distribution model
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• Weak (Bad) volume scaling for χ and K when c ∼ ∆2V
• U makes the ∆ contribution to the scaling smaller, while the extrapolated

value depends on the existence of ∆
• We want to separate the dependence of c and ∆
• Another way is to use Fourier transform!
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Fourier transform of two states

∫
dx exp(ixt) [f (x+∆)+ f (x−∆)]

∝
[∫

dx exp(ixt) f (x)

]
cos∆t

→ exp(− t2

2V/c
) cos∆t for f (x) ∝ exp(− x2

2c/V
)

• Completely separate the dependence of the width and the peak distance

• How to see it? cos∆t has zeros at t = (2n+ 1)π/2∆
• Here, the location of zeros only depend on ∆
• Not new at all. This is just Lee-Yang zero.

• Beware: Signal is suppressed exponentially with increasing t
• Beware: For this two-states model (does not need to be Gaussian), two states

has to be the same to get cos function



June 27, 2012 Reweighting and Lee-Yang Zero Xiao-Yong Jin

What is Lee-Yang zero mathematically?

• Inspired by Alves, Berg & Sanielevici (1992) and Ejiri (2006)

• To find the zeros of Z with complexified β = βR + iβI

Z(βR, βI , µ) =
∫

[dU ] eβPtot [detD(µ;U )]Nf

= Z(βR, βI = 0, µ)

∫
dPtot eiβ

IPtot Prob(Ptot)

Prob(Ptot) =
1

Z(βR, βI = 0, µ)

∫
[dU ]δ(Ptot − P ′)eβ

RP ′ [detD(µ)]Nf

• It is a Fourier transform of the probability function of Ptot ∝ V
• Modify our previous double-Gaussian model to be

Prob(Ptot) = f (x+∆V )+ f (x−∆V ) with f (x) ∝ exp(− x2

2cV
)

Znorm(βR, βI , µ) = Z(βR, βI , µ)

Z(βR, βI = 0, µ)
∝ exp(− (βI )2

2/cV
) cos∆VβI
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Reweighting in Lee-Yang zero

• Reweighting is a must to see the proper zero point where the Fourier trans-

form produces a cos fonction

• Conventionally reweighting in β is used (basically using complex β)

• Need to be very carefull with β reweighting

− Valid in a small β region suppressed exponentially by the volume

− Unwanted scale change — we get a zero at a different lattice spacing

− ...
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Lee-Yang zero under µ reweighting

• We use the complex β, but we do not need to reweight in β
• We reweight in any parameter that can move the system to the transition

• In finite density studies, we can do µ reweighting

Znorm(βI , µ′) = Z(βI , µ′)
Z(βI = 0, µ′)

e−iβINp〈P〉µ′

=

〈
eiβINp∆P

(
detD(µ′)
detD(µ0)

)Nf eiNfθ(µ0)

�
µ0〈(

detD(µ′)
detD(µ0)

)Nf eiNfθ(µ0)

�
µ0

,

• We calculate the ratio of determinant with Taylor expansion in µ/T
• We cut off the expansion after the 4th order (the 4th derivative is also used

for other cumulant quantities)

• We calculate the derivatives exactly
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Reweighting in µ — Plaquette (β = 1.6, κ = 0.1371)
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Reweighting in µ — ln detD derivatives at µ = 0

∂n

∂µn
ln detD

||||||||||||||||||
|||||||||
µ=0

= Tr
∂n

∂µn
lnD

||||||||||||||||||
|||||||||
µ=0

for n = 1, 2, 3, 4

• Data taken from 4 flavors, β = 1.60, κ = 0.1371, µ = 0.21, 83 × 4.

• µ derivatives of the Dirac operator at µ = 0 from Taylor expansion upto the

4th derivative

• At µ = 0, odd derivatives are purely imaginary, while even ones are real

• For these derivatives from Taylor expansion, 4 terms for n = 1, 3 terms for

n = 2, 2 terms for n = 3, and only 1 term for n = 4
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Reweighting in µ — change of reweighting factor
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• Change of weight with µ reweighting with 4 flavors at β = 1.6, κ = 0.1371

• Two different definitions of the effective number of configurations

NOptimism =
〈w〉2

〈w2〉Nconf

NPessimism =
〈w〉

max(w )
Nconf

w = Re

[
detD(µ′)
|detD(µ0)|

]Nf
Reweight from µ0 to µ′
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The normalized partition function (from µ = 0.205, 83)
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The position of the first zero in βI - µ plane

0

0.002

0.004

0.006

0.008

0.01

0.2 0.202 0.204 0.206 0.208 0.21

β
I

µ

µ = 0.200, V = 63

µ = 0.205, V = 63

µ = 0.210, V = 63

µ = 0.215, V = 63

µ = 0.205, V = 62 × 8
µ = 0.205, V = 6× 82

µ = 0.200, V = 83

µ = 0.205, V = 83

µ = 0.210, V = 83

µ = 0.215, V = 83

• Positions of zeros in βI - µ plane with 4 flavors, β = 1.60, κ = 0.1371

• Errors are estimated by finding zero of each Jackknife

• Consistent except result from µ = 0.215
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Volume scaling of the location of the first zero

0

0.002

0.004

0.006

0.008

0.01

1/83 1/826 1/628 1/63

β
I

1/V

0.00007(25)+ 2.07(16)V−1 − 139(23)V−2

• Data from 4 flavors, β = 1.60, κ = 0.1371, µ = 0.205

• There are higher order (V−2) dependence of the first zero

• Double-Gaussian model ⇒ cos∆VβI ⇒ βIzero ∝ 1/∆V
• When the volume is small (V Ü 83), the volume averaged peak distance (dif-

ference between the two states) is likely to have volume dependence
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Conclusions and outlook

• What we have learnt

− We have investigated the location of parition function zeros by reweight-

ing in µ direction

− Avoided the complication of β reweighting with conventional methods

− Locations of the first zero are consistent across different ensembles sim-

ulated at different µ
− Our data shows possible volume dependence of the peak distance between

two states at the transition with small volumes (V Ü 83)

• What we are planning to do

− Do the actual Fourier transformation for other quantities

− Improving µ reweighting by using the properties of dirac operator deriv-

atives at µ = 0

− Apply this method to 3 flavors


