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Introduction

¢ Following S. Takeda's talk on Monday about 4 flavors
e Phase quenched simulations of grand canonical ensembles

Z) = J[dU] ePNePU) | det D(p; U)|Nr

e N, = 4 with Spatial Volumes of 63, 6% - 8, 6 - 82 and 83
e 4,000 configurations for 63 and to 20,000 ~ 40, 000 configurations for 83
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We observed weak volume scaling.
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Assume a double-Gaussian distribution model
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e Weak (Bad) volume scaling for x and K when ¢ ~ A%V

e U makes the A contribution to the scaling smaller, while the extrapolated
value depends on the existence of A

¢ We want to separate the dependence of ¢ and A

e Another way is to use Fourier transform!
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Fourier transform of two states

J dx exp(ixt) [f(x + A) + f(x — A)]

oc U dx exp(ixt)f(x)} CcoS At

2 2
2V/c) cos At for f(x) oc exp(— 2V

)

— exp(_

o Completely separate the dependence of the width and the peak distance

e How to see it? cos At has zeros att = (2n + 1)1t/2A

e Here, the location of zeros only depend on A

e Not new at all. This is just Lee-Yang zero.

e Beware: Signal is suppressed exponentially with increasing t

e Beware: For this two-states model (does not need to be Gaussian), two states
has to be the same to get cos function
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What is Lee-Yang zero mathematically?

o Inspired by Alves, Berg & Sanielevici (1992) and Ejiri (2006)
e To find the zeros of Z with complexified g = R + iB!

Z(BR, B1, ) = j [dU] eBPor [det D(u; UYNr

_ Z(BR. Bl = 0, u)J APyt €F'Por Prob(Prg)

1

Prob(Pior) = Z(BR, BT = 0

U)J[dU] 8(Pror — P)eF"?" [det D(u)INr

o Itis a Fourier transform of the probability function of Py o< V
e Modify our previous double-Gaussian model to be

2
Prob(Piot) = f(x + AV) + f(x — AV)  with  f(x) o exp(_z’éiv)

R pRI I\2
Znorm (B, Bl ) = 2 P H) b

1
= ZBR. Bl =0 2/CV)COSAVﬁ
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Reweighting in Lee-Yang zero

e Reweighting is a must to see the proper zero point where the Fourier trans-
form produces a cos fonction

¢ Conventionally reweighting in 8 is used (basically using complex S)

e Need to be very carefull with 8 reweighting
— Valid in a small f region suppressed exponentially by the volume
— Unwanted scale change — we get a zero at a different lattice spacing
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Lee-Yang zero under u reweighting

We use the complex S, but we do not need to reweight in 8
We reweight in any parameter that can move the system to the transition
In finite density studies, we can do u reweighting

( I! ,) _iRI
I .7 Zz B H iB'Np(P)
Znorm(B y U ) = 72(31 O,U')e

iBIN, AP detD(u’>>Nf iNFO(o)
<€ ! (dEt D(uo) e

< ( det D(u) )Nf eiNfQ(uo)>
det D(io)

e We calculate the ratio of determinant with Taylor expansion in u/T

e We cut off the expansion after the 4™ grder (the 4™ derivative is also used
for other cumulant quantities)

e We calculate the derivatives exactly
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Reweighting in u — Plaquette (f = 1.6, k = 0.1371)
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Reweighting in y — Indet D derivatives at u = 0
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e Data taken from 4 flavors, = 1.60, k = 0.1371, u = 0.21, 83 x 4.
e u derivatives of the Dirac operator at u = 0 from Taylor expansion upto the
4™ derivative
e At u = 0, odd derivatives are purely imaginary, while even ones are real
e For these derivatives from Taylor expansion, 4 terms for n = 1, 3 terms for
n = 2,2 terms for n = 3, and only 1 term for n = 4
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Reweighting in u — change of reweighting factor
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e Change of weight with u reweighting with 4 flavors at § = 1.6, k = 0.1371
e Two different definitions of the effective number of configurations
(w)? detD’) |
Noptimism = ——5- N, =
Optimism (w2) conf w =R |:|detD([Jo)|
(w)

maX(W)N conf Reweight from p to p’

N Pessimism =
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The normalized partition function (from u = 0.205, 83)
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The position of the first zero in B’ - u plane
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e Positions of zeros in B! - u plane with 4 flavors, 8 = 1.60, k = 0.1371

e Errors are estimated by finding zero of each Jackknife

e Consistent except result from u = 0.215
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Volume scaling of the location of the first zero
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e Data from 4 flavors, B = 1.60, k = 0.1371, u = 0.205

o There are higher order (V~?) dependence of the first zero

e Double-Gaussian model = cos AVB! = BL,. o 1/AV

e When the volume is small (V < 83), the volume averaged peak distance (dif-

ference between the two states) is likely to have volume dependence
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Conclusions and outlook

¢ What we have learnt

— We have investigated the location of parition function zeros by reweight-
ing in p direction

— Avoided the complication of  reweighting with conventional methods

— Locations of the first zero are consistent across different ensembles sim-
ulated at different u

— Our data shows possible volume dependence of the peak distance between
two states at the transition with small volumes (V < 83)

e What we are planning to do
— Do the actual Fourier transformation for other quantities
— Improving u reweighting by using the properties of dirac operator deriv-
ativesat u =0
— Apply this method to 3 flavors
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