Reweighting and Lee-Yang Zero

Xiao-Yong Jin

RIKEN AICS

In collaboration with Y. Kuramashi, Y. Nakamura, S. Takeda and A. Ukawa

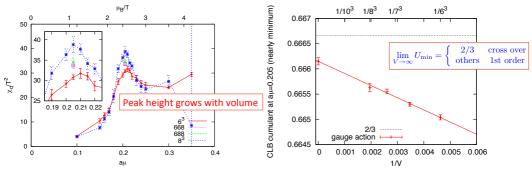
Lattice 2012

Introduction

- Following S. Takeda's talk on Monday about 4 flavors
- Phase quenched simulations of grand canonical ensembles

$$Z_{||} = \int [\mathrm{d}U] e^{\beta N_p P(U)} |\det D(\mu; U)|^{N_f}$$

- $N_t = 4$ with Spatial Volumes of 6^3 , $6^2 \cdot 8$, $6 \cdot 8^2$ and 8^3
- 4,000 configurations for 6^3 and to 20,000 ~ 40,000 configurations for 8^3

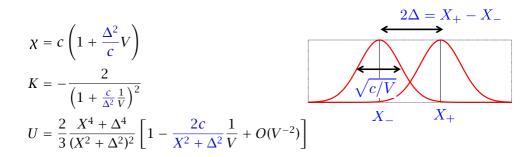


We observed weak volume scaling.

Reweighting and Lee-Yang Zero

Xiao-Yong Jin

Assume a double-Gaussian distribution model



- Weak (Bad) volume scaling for χ and K when $c \sim \Delta^2 V$
- *U* makes the Δ contribution to the scaling smaller, while the extrapolated value depends on the existence of Δ
- We want to separate the dependence of c and Δ
- Another way is to use Fourier transform!

Fourier transform of two states

$$\int dx \exp(ixt) [f(x + \Delta) + f(x - \Delta)]$$

$$\propto \left[\int dx \exp(ixt) f(x) \right] \cos \Delta t$$

$$\rightarrow \exp(-\frac{t^2}{2V/c}) \cos \Delta t \quad \text{for } f(x) \propto \exp(-\frac{x^2}{2c/V})$$

- Completely separate the dependence of the width and the peak distance
- How to see it? $\cos \Delta t$ has zeros at $t = (2n + 1)\pi/2\Delta$
- Here, the location of zeros only depend on Δ
- Not new at all. This is just Lee-Yang zero.
- Beware: Signal is suppressed exponentially with increasing *t*
- Beware: For this two-states model (does not need to be Gaussian), two states has to be the same to get cos function

What is Lee-Yang zero mathematically?

- Inspired by Alves, Berg & Sanielevici (1992) and Ejiri (2006)
- To find the zeros of *Z* with complexified $\beta = \beta^R + i\beta^I$

$$Z(\beta^{R}, \beta^{I}, \mu) = \int [dU] e^{\beta P_{\text{tot}}} [\det D(\mu; U)]^{N_{f}}$$
$$= Z(\beta^{R}, \beta^{I} = 0, \mu) \int dP_{\text{tot}} e^{i\beta^{I}P_{\text{tot}}} \operatorname{Prob}(P_{\text{tot}})$$
$$\operatorname{Prob}(P_{\text{tot}}) = \frac{1}{Z(\beta^{R}, \beta^{I} = 0, \mu)} \int [dU] \delta(P_{\text{tot}} - P') e^{\beta^{R}P'} [\det D(\mu)]^{N_{f}}$$

- It is a Fourier transform of the probability function of $P_{tot} \propto V$
- Modify our previous double-Gaussian model to be

$$\operatorname{Prob}(P_{\text{tot}}) = f(x + \Delta V) + f(x - \Delta V) \quad \text{with} \quad f(x) \propto \exp(-\frac{x^2}{2cV})$$
$$Z_{\text{norm}}(\beta^R, \beta^I, \mu) = \frac{Z(\beta^R, \beta^I, \mu)}{Z(\beta^R, \beta^I = 0, \mu)} \propto \exp(-\frac{(\beta^I)^2}{2/cV}) \cos \Delta V \beta^I$$

2

Reweighting in Lee-Yang zero

- Reweighting is a must to see the proper zero point where the Fourier transform produces a cos fonction
- Conventionally reweighting in β is used (basically using complex β)
- Need to be very carefull with β reweighting
 - Valid in a small β region suppressed exponentially by the volume
 - Unwanted scale change we get a zero at a different lattice spacing

...

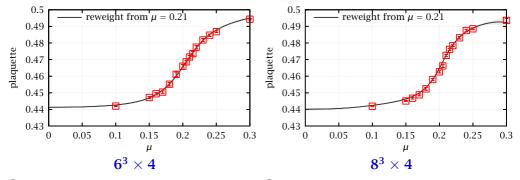
Lee-Yang zero under μ reweighting

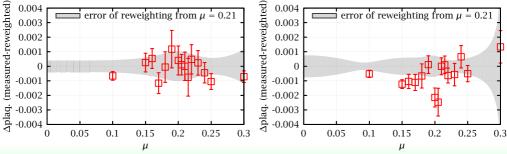
- We use the complex β , but we do not need to reweight in β
- We reweight in any parameter that can move the system to the transition
- In finite density studies, we can do μ reweighting

$$\begin{split} Z_{\rm norm}(\beta^{I},\mu') &= \frac{Z(\beta^{I},\mu')}{Z(\beta^{I}=0,\mu')} e^{-i\beta^{I}N_{p}\langle P \rangle_{\mu'}} \\ &= \frac{\left\langle e^{i\beta^{I}N_{p}\Delta P} \left(\frac{\det D(\mu')}{\det D(\mu_{0})}\right)^{N_{f}} e^{iN_{f}\theta(\mu_{0})} \right\rangle_{\mu_{0}}}{\left\langle \left(\frac{\det D(\mu')}{\det D(\mu_{0})}\right)^{N_{f}} e^{iN_{f}\theta(\mu_{0})} \right\rangle_{\mu_{0}}}, \end{split}$$

- We calculate the ratio of determinant with Taylor expansion in μ/T
- We cut off the expansion after the 4th order (the 4th derivative is also used for other cumulant quantities)
- We calculate the derivatives exactly

Reweighting in μ — Plaquette (β = 1.6, κ = 0.1371)

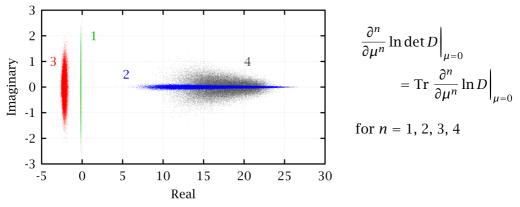




Reweighting and Lee-Yang Zero

Xiao-Yong Jin

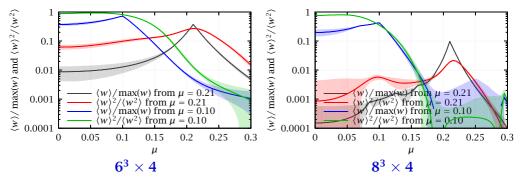
Reweighting in μ — ln det *D* derivatives at μ = 0



- Data taken from 4 flavors, $\beta = 1.60$, $\kappa = 0.1371$, $\mu = 0.21$, $8^3 \times 4$.
- μ derivatives of the Dirac operator at $\mu = 0$ from Taylor expansion upto the 4th derivative
- At $\mu = 0$, odd derivatives are purely imaginary, while even ones are real
- For these derivatives from Taylor expansion, 4 terms for *n* = 1, 3 terms for *n* = 2, 2 terms for *n* = 3, and only 1 term for *n* = 4

Reweighting and Lee-Yang Zero

Reweighting in μ — change of reweighting factor



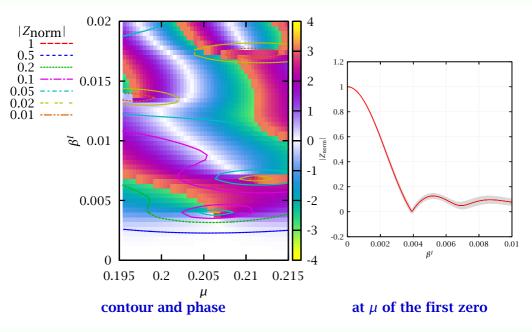
- Change of weight with μ reweighting with 4 flavors at $\beta = 1.6$, $\kappa = 0.1371$
- Two different definitions of the effective number of configurations

$$N_{\text{Optimism}} = \frac{\langle w \rangle^2}{\langle w^2 \rangle} N_{\text{conf}}$$
$$N_{\text{Pessimism}} = \frac{\langle w \rangle}{\max(w)} N_{\text{conf}}$$

$$w = \operatorname{Re}\left[\frac{\det D(\mu')}{|\det D(\mu_0)|}\right]^{N_f}$$

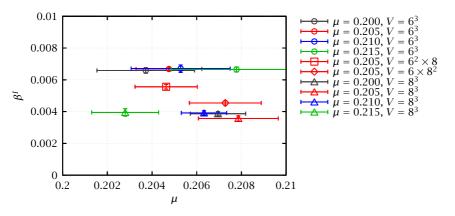
Reweight from μ_0 to μ'

The normalized partition function (from $\mu = 0.205, 8^3$)



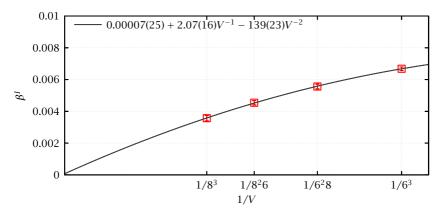
Xiao-Yong Jin

The position of the first zero in β^{I} - μ plane



- Positions of zeros in β^{I} μ plane with 4 flavors, $\beta = 1.60$, $\kappa = 0.1371$
- Errors are estimated by finding zero of each Jackknife
- Consistent except result from $\mu = 0.215$

Volume scaling of the location of the first zero



- Data from 4 flavors, $\beta = 1.60$, $\kappa = 0.1371$, $\mu = 0.205$
- There are higher order (V^{-2}) dependence of the first zero
- Double-Gaussian model $\Rightarrow \cos \Delta V \beta^I \Rightarrow \beta^I_{\text{zero}} \propto 1/\Delta V$
- When the volume is small ($V \leq 8^3$), the volume averaged peak distance (difference between the two states) is likely to have volume dependence

Conclusions and outlook

- What we have learnt
 - We have investigated the location of parition function zeros by reweighting in μ direction
 - Avoided the complication of β reweighting with conventional methods
 - Locations of the first zero are consistent across different ensembles simulated at different μ
 - − Our data shows possible volume dependence of the peak distance between two states at the transition with small volumes ($V \leq 8^3$)

- What we are planning to do
 - Do the actual Fourier transformation for other quantities
 - Improving μ reweighting by using the properties of dirac operator derivatives at $\mu = 0$
 - Apply this method to 3 flavors