Singular values of the Dirac operator at nonzero density

Takuya Kanazawa,^a Tilo Wettig,^a Naoki Yamamoto^b ^aUniversity of Regensburg, ^bINT Seattle JHEP 12 (2011) 007 [arXiv:1110.5858]

Lattice 2012, Cairns, 27 June 2012

- Introduction
- eigenvalues and singular values of the Dirac operator
 - Index theorem for non-Hermitian Dirac operator
- Phases of two-color QCD
- Banks-Casher-type relation for diquark condensate
- Low-energy effective theories with diquark sources at nonzero density
- Smilga-Stern-type relations
- Finite-volume analysis
 - *ɛ*-regime
 - Leutwyler-Smilga-type sum rules
 - Random matrix theories
- Conclusions and outlook

- some QCD-like theories don't have a sign problem at nonzero density (with suitable choice of parameters, e.g., even N_f with degenerate m_f) examples:
 - QCD with gauge group SU(2) or Sp($2N_c$) ($\beta = 1$)
 - three-color QCD at nonzero isospin density ($\beta = 2$)
 - QCD with gauge group $SO(N_c)$ or QCD with adjoint fermions ($\beta = 4$)
 - β = Dyson index (determined by anti-unitary symmetries, or equivalently by (pseudo-) reality of fermion representation)
- here I will concentrate on two-color QCD ($\beta = 1$)
 - Dirac eigenvalue spectrum studied in great detail in the past (related to $\langle \bar{\psi}\psi \rangle$ at low density and BCS gap Δ at high density)
 - today's topic: Dirac singular values (related to $\langle \psi \psi \rangle$ at all densities)
- see arXiv:1110.5858 for details and the isospin and adjoint cases

Introduction

- eigenvalues and singular values of the Dirac operator
 - Index theorem for non-Hermitian Dirac operator
- Phases of two-color QCD
- Banks-Casher-type relation for diquark condensate
- Low-energy effective theories with diquark sources at nonzero density
- Smilga-Stern-type relations
- Finite-volume analysis
 - *ɛ*-regime
 - Leutwyler-Smilga-type sum rules
 - Random matrix theories
- Onclusions and outlook

Dirac eigenvalues

• Dirac eigenvalues:

$$D(\mu)\psi_n = \lambda_n \psi_n$$

 $\mu = 0: \lambda_n$ purely imaginary

because of $\{D, \gamma_5\} = 0$, nonzero eigenvalues come in pairs $\pm \lambda_n$

$\mu \neq 0$: λ_n generically complex

because of $[D, \gamma_5 C \tau_2 K] = 0$, nonzero eigenvalues come in quadruplets $\pm \lambda, \pm \lambda^*$ or purely real/purely imaginary pairs $\pm \lambda$

• eigenvalue flow as a function of μ (specific to $\beta = 1$):

Dirac singular values

defined by

$$D^{\dagger}D\varphi_n = \xi_n^2\varphi_n$$

- name comes from singular value decomposition of a non-Hermitian matrix
- the ξ_n are real and nonnegative
- $D^{\dagger}D$ and DD^{\dagger} share all nonzero singular values
- the states φ_n have definite chirality (eigenstates of γ_5)
- at $\mu = 0$ we trivially have $\xi_n = |\lambda_n|$, but for $\mu \neq 0$ the eigenvalues and singular values are unrelated (and live on different physical scales)
- singular value flow as a function of μ :

- D and $D^{\dagger}D$ have the same zero modes
- topological zero modes of D(μ) remain zero modes and change smoothly as a function of μ

Dirac operator has the structure

$$D = \begin{pmatrix} 0 & D_L \\ D_R & 0 \end{pmatrix}$$

index is defined as

 $\operatorname{ind} D = \operatorname{dim} \operatorname{ker} D_R - \operatorname{dim} \operatorname{ker} D_L$

• non-Hermitian version of the index theorem (new result):

$$\frac{1}{32\pi^2} \int d^4x \, F\tilde{F} = \frac{1}{2} \left[\operatorname{ind} D(\mu) + \operatorname{ind} D(\mu)^{\dagger} \right]$$

in the proof it is important to work with the eigenstates of $D^{\dagger}D$, since the eigenbasis of D (non-Hermitian!) can become incomplete

if there are no accidental zero modes we have ind D(µ) = ind D(µ)[†]
 → standard index theorem

- Introduction
- eigenvalues and singular values of the Dirac operator
 - Index theorem for non-Hermitian Dirac operator
- Phases of two-color QCD
- Banks-Casher-type relation for diquark condensate
- Low-energy effective theories with diquark sources at nonzero density
- Smilga-Stern-type relations
- Finite-volume analysis
 - *ɛ*-regime
 - Leutwyler-Smilga-type sum rules
 - Random matrix theories
- Conclusions and outlook

Two-color QCD at nonzero density

• Dirac operator (in Euclidean space) with τ_a = generators of SU(2):

$$D(\mu) = \gamma_v D_v + \mu \gamma_4$$
 with $D_v = \partial_v + i A_v^a \frac{\tau_a}{2}$
anti-Hermitian Hermitian

• anti-unitary symmetry (*C* = charge conj., *K* = complex conj.): Leutwyler-Smilga 1992

$$[C\tau_2 K, iD(\mu)] = 0$$
 with $(C\tau_2 K)^2 = 1$

 $\rightarrow \beta = 1, D(\mu)$ is real in a suitable basis, det $D(\mu)$ is real \rightarrow no sign problem for even N_f (we don't consider odd N_f here)

microscopic Lagrangian with mass term and diquark sources:

$$\mathscr{L}_f = \bar{\psi}[D(\mu) + MP_L + M^{\dagger}P_R]\psi + \left[\frac{1}{2}\psi^T C \tau_2 (J_R P_R + J_L P_L)\psi + \text{h.c.}\right]$$

 $P_{R/L} = \frac{1}{2}(\mathbb{1} \pm \gamma_5), J_{R/L}$ are complex anti-symmetric $N_f \times N_f$ matrices

Phases of two-color QCD: low density

• as a function of μ , m, and j, chiral symmetry is broken by $\langle \bar{\psi}\psi \rangle$ or $\langle \psi\psi \rangle$

Kogut-Stephanov-Toublan-Verbaarschot-Zhitnitsky 2000

• $\psi\psi$ is shorthand for $\psi^T C\gamma_5 \tau_2 I\psi$

this is the scalar, color- and flavor antisymmetric diquark condensate

- instanton-induced interaction and QCD inequalities favor scalar over pseudoscalar condensate
 Alford et al. 1998, Rapp et al. 1998, Kogut et al. 1999
- single-gluon exchange favors this over the color-symmetric condensate

• perturbative calculations at large μ : Son 1999, T. Schäfer 2000

 $0 pprox \langle \bar{\psi}\psi
angle \ll \langle \psi\psi
angle$

 \rightarrow chiral symmetry and U(1)_B broken by the diquark condensate

- for $\mu \gg \Lambda_{SU(2)}$ we have BCS-type diquark pairing (since there is an attractive channel between quarks near the Fermi surface)
- diquarks are loosely bound in real space

Phases of two-color QCD: intermediate density

- BEC of tightly bound diquarks
- same quantum numbers as BCS superfluid at high density
 → conjecture: BEC-BCS crossover

(figure from Tin-Lun Ho, Science 305 (2004) 1114)

diquark condensate in two-color QCD

Hands-Kim-Skullerud 2010

• we will construct alternative methods to obtain $\langle \psi \psi
angle$ from the lattice

- Introduction
- eigenvalues and singular values of the Dirac operator
 - Index theorem for non-Hermitian Dirac operator
- Phases of two-color QCD
- Banks-Casher-type relation for diquark condensate
- Low-energy effective theories with diquark sources at nonzero density
- Smilga-Stern-type relations
- Finite-volume analysis
 - *ɛ*-regime
 - Leutwyler-Smilga-type sum rules
 - Random matrix theories
- Onclusions and outlook

Banks-Casher-type relation

• from now on: chiral limit, even N_f (odd N_f is a mystery), and $J_R = -J_L = jI$ with real *j* (to have positive definite fermionic measure)

$$Z(j) = \langle \det^{N_f/2}(D^{\dagger}D + j^2) \rangle_{\mathsf{YM}} = \left\langle \prod_n (\xi_n^2 + j^2)^{N_f/2} \right\rangle_{\mathsf{YM}}$$

• define density of singular values:

$$\rho_{\rm sv}(\xi) = \lim_{V_4 \to \infty} \frac{1}{V_4} \Big\langle \sum_n \delta(\xi - \xi_n) \Big\rangle_{j=0} \quad \text{for} \quad \xi > 0$$

• the scalar diquark condensate then follows by a standard calculation:

ightarrow diquark condensate can be obtained on the lattice from $ho_{
m sv}(0)$

Comments

- result was already obtained by Fukushima 2008 (for $N_f = 2$)
- result holds at $\mu = 0$ and $\mu \neq 0$ (BC for QCD only at $\mu = 0$)
- integral over ξ needs UV regularization
 (UV-divergent part disappears in the limit j → 0⁺)
- contributions of zero modes were dropped (justified only if measure is positive definite)
- to derive the BC relation, the fermionic measure must be positive definite if it is not, we get −∞ from the integral and +∞ from zero modes (see Leutwyler-Smilga 1992)
 - sum is finite and gives the condensate
 - but $\rho_{sv}(0)$ is undefined \rightarrow no BC relation

- Introduction
- eigenvalues and singular values of the Dirac operator
 - Index theorem for non-Hermitian Dirac operator
- Phases of two-color QCD
- Banks-Casher-type relation for diquark condensate
- Low-energy effective theories with diquark sources at nonzero density
- Smilga-Stern-type relations
- Finite-volume analysis
 - *ɛ*-regime
 - Leutwyler-Smilga-type sum rules
 - Random matrix theories
- Onclusions and outlook

Low-energy effective theories with diquark sources at nonzero density

three different density regimes: differ in their patterns of chiral symmetry breaking and therefore in the number of Nambu-Goldstone modes

low density (theory L): start from symmetry breaking pattern at zero density

 $SU(2N_f) \rightarrow Sp(2N_f)$

then treat μ as a small perturbation (as in Kogut et al. 2000) some of the NG bosons acquire a mass as μ increases

• intermediate density (theory I): symmetry breaking pattern is

 $SU(N_f)_L \times SU(N_f)_R \times U(1)_B \rightarrow Sp(N_f)_L \times Sp(N_f)_R$

all NG modes massless for j = 0

• high density (theory H): instantons are screened

→ $U(1)_A$ not broken by anomaly but spontaneously by diquark condensate → one additional NG boson (η' becomes massless T. Schäfer 2003) symmetry breaking pattern is now

 $\mathrm{SU}(N_f)_L \times \mathrm{SU}(N_f)_R \times \mathrm{U}(1)_B \times \mathrm{U}(1)_A \to \mathrm{Sp}(N_f)_L \times \mathrm{Sp}(N_f)_R$

μ -dependence of the masses of the NG modes

- theory I is obtained from theory L or theory H by integrating out the massive mode(s)
- matching of the LECs similar to matching between SU(2) and SU(3) chPT
- domains of validity: see arXiv:1110.5858 partial overlap of L/I (at low density) and of I/H(at high density)

• theory L: $\mathscr{L}_{\text{eff}}^{\text{L}} = \frac{F^2}{2} \operatorname{tr}(\nabla_{v} \Sigma \nabla_{v} \Sigma^{\dagger}) - \Phi_{\text{L}} \operatorname{Re} \operatorname{tr}(\bar{J}\Sigma)$ with

with

$$\begin{aligned} \nabla_{v} \Sigma &= \partial_{v} \Sigma - \mu \delta_{v0} (B\Sigma + \Sigma B) \\ \nabla_{v} \Sigma^{\dagger} &= \partial_{v} \Sigma^{\dagger} + \mu \delta_{v0} (\Sigma^{\dagger} B + B\Sigma^{\dagger}) \\ \Sigma &= U \Sigma_{d} U^{T}, \quad \Sigma_{d} = \text{diag}(I, -I), \quad I = \begin{pmatrix} 0 & -\mathbb{1}_{N_{f}/2} \\ \mathbb{1}_{N_{f}/2} & 0 \end{pmatrix} \\ B &= \text{diag}(\mathbb{1}_{N_{f}}, -\mathbb{1}_{N_{f}}), \quad \bar{J} = \text{diag}(J_{L}, -J_{R}^{\dagger}) \end{aligned}$$

- Σ parametrizes the coset space SU(2N_f)/Sp(2N_f)
- diquark condensate is assumed to form in the scalar channel
- *F* and $\Phi_L \cong |\langle \psi^T C \gamma_5 \tau_2 I \psi \rangle| / 2N_f$ are low-energy constants (indep. of μ)
- two types of NG modes $(j \rightarrow 0)$:

type 1: mass =
$$\sqrt{j\Phi_L/F^2}$$
 $(N_f^2 - N_f - 1 \text{ modes})$
type 2: mass = $\sqrt{j\Phi_L/F^2 + (2\mu)^2}$ $(N_f^2 \text{ modes})$

Effective theory H at high density

• theory **H**:

$$\mathcal{L}_{\text{eff}}^{\text{H}} = \left\{ \frac{N_f \tilde{f}_0^2}{2} \left(|\partial_0 L|^2 + v_0^2 |\partial_i L|^2 \right) + \frac{\tilde{f}^2}{2} \operatorname{tr} \left(|\partial_0 \Sigma_L|^2 + v^2 |\partial_i \Sigma_L|^2 \right) + (L \leftrightarrow R) \right\}$$
$$- \Phi_{\text{H}} \operatorname{Re} \operatorname{tr} (J_L L \Sigma_L - J_R R \Sigma_R) - \frac{2 \tilde{f}_0^2}{N_f} m_{\text{inst}}^2 \operatorname{Re} (L^{\dagger} R)^{N_f/2}$$

- $\Sigma_{L/R}$ parametrize SU $(N_f)_i$ /Sp $(N_f)_i$ (i = L, R)
- L/R parametrize $U(1)_L$ and $U(1)_R$
- $m_{\text{inst}} = \text{single-instanton contribution to } \eta' \text{mass} (n \text{instanton vertices negligible})$ Re $(L^{\dagger}R)^{N_f/2}$ is symmetric under anomaly-free subgroup $\mathbb{Z}_{2N_f} \subset U(1)_A$
- all LECs now depend on μ
- two types of NG modes $(j \rightarrow 0)$:

type 1:
$$\begin{split} m &= \sqrt{j \Phi_{\rm H} / \tilde{f}^2} & (N_f^2 - N_f - 2 \text{ modes}) \\ m &= \sqrt{j \Phi_{\rm H} / \tilde{f}_0^2} & (1 \text{ mode} \widehat{=} \text{U}(1)_B) \\ \end{split}$$
type 2:
$$\begin{split} m_{\eta'} &= \sqrt{j \Phi_{\rm H} / \tilde{f}_0^2 + m_{\rm inst}^2} & (1 \text{ mode} \widehat{=} \text{U}(1)_A) \\ & \rightarrow 0 \text{ for } \mu \to \infty \end{split}$$

• theory I is obtained from L or H by integrating out the type-2 NG modes:

$$\mathcal{L}_{\text{eff}}^{I} = N_{f} f_{0}^{2} \left\{ |\partial_{0}V|^{2} + \nu_{0}^{2} |\partial_{i}V|^{2} \right\} + \frac{f^{2}}{2} \operatorname{tr} \left\{ |\partial_{0}\Sigma_{L}|^{2} + \nu^{2} |\partial_{i}\Sigma_{L}|^{2} + (L \leftrightarrow R) \right\}$$
$$- \Phi_{I} \operatorname{Re} \left\{ \operatorname{tr}(J_{L}\Sigma_{L} - J_{R}\Sigma_{R})V \right\}$$

- L and R replaced by $V \cong U(1)_B$
- all LECs depend on µ
- now there are only type-1 NG modes (massless in the $j \rightarrow 0$ limit)

- Introduction
- eigenvalues and singular values of the Dirac operator
 - Index theorem for non-Hermitian Dirac operator
- Phases of two-color QCD
- Banks-Casher-type relation for diquark condensate
- Low-energy effective theories with diquark sources at nonzero density
- Smilga-Stern-type relations
- Finite-volume analysis
 - *ɛ*-regime
 - Leutwyler-Smilga-type sum rules
 - Random matrix theories
- Onclusions and outlook

• Smilga-Stern (1993) for massless three-color QCD at $\mu = 0$:

$$\rho(\lambda) = \frac{\Sigma}{\pi} + \frac{\Sigma^2}{32\pi^2 F^4} \frac{N_f^2 - 4}{N_f} |\lambda| + o(\lambda)$$

- $\rho(\lambda)$ = spectral density (of Dirac eigenvalues), Σ = chiral condensate
- first term: Banks-Casher relation
- second term: slope of spectral density (Smilga-Stern relation)
- sketch of the calculation:
 - define a suitable susceptibility as a function of quark mass m
 - compute it in the microscopic theory (expressed in terms of p) and in the effective theory (to one loop)
 - both results contain logarithmic divergence for $m \rightarrow 0$
 - match the divergences

• role of quark mass now played by diquark source, parametrized as

$$J = jI + I \sum_{a} j_{a} t^{a}$$

with t^a the generators of $SU(N_f)/Sp(N_f)$

• going through similar steps as in the Smilga-Stern method we obtain

$$\rho_{sv}'(0) = \begin{cases} \frac{(N_f - 2)(N_f + 1)}{N_f F^4} \frac{\Phi_L^2}{16\pi^2} & \text{for } L \text{ at } \mu = 0\\ \left[\frac{(N_f - 4)(N_f + 2)}{2N_f f^4} + \frac{1}{N_f f_0^2 f^2}\right] \frac{\Phi_I^2}{16\pi^2} & \text{for } I\\ \left[\frac{(N_f - 4)(N_f + 2)}{2N_f f^4} + \frac{2}{N_f f_0^2 f^2}\right] \frac{\Phi_H^2}{16\pi^2} & \text{for } H \end{cases}$$

• note: method fails for $N_f = 2$, but results are expected to remain valid (slope can also be computed in partially quenched perturbation theory: more powerful method, but calculation much more complicated)

- puzzle: there are three different results, and it does not seem possible to interpolate them smoothly as a function of μ
- resolution: it depends on where you measure the slope can be understood by analogy to SU(2) → SU(3) chPT (Zyablyuk 1999) or by employing partially quenched perturbation theory

low density

high density

- Introduction
- eigenvalues and singular values of the Dirac operator
 - Index theorem for non-Hermitian Dirac operator
- Phases of two-color QCD
- Banks-Casher-type relation for diquark condensate
- Low-energy effective theories with diquark sources at nonzero density
- Smilga-Stern-type relations
- Finite-volume analysis
 - *ɛ*-regime
 - Leutwyler-Smilga-type sum rules
 - Random matrix theories
- Conclusions and outlook

• in a finite box with $V_4 = L^4$, the ε -regime is defined by

 \rightarrow partition function dominated by zero-momentum modes of NG bosons

- m_{ℓ} = mass of lightest non-NG particle
 - theory L: $m_{\ell}(L) \sim \Lambda$ = mass of lightest non-NG particle at zero density
 - theory $\mathbf{H}: m_{\ell}(\mathbf{H}) \sim \Delta$ (since Δ plays the role of a constituent quark mass)
 - theory I at low density: $m_{\ell}(I) \sim \mu$
 - theory I at high density: $m_{\ell}(I) \sim \min\{m_{\eta'}(\mu), \Delta(\mu)\}$
- the ε -regimes of the three effective theories don't overlap

- idea:
 - expand the partition functions of the microscopic theory and of the static limit of the effective theory in powers of the quark mass
 - introduce a θ -angle and project onto sectors of fixed topology using

$$Z_{\nu} = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \, e^{-i\nu\theta} Z(\theta)$$

- matching the coefficients of the quark mass yields sum rules for the inverse Dirac eigenvalues in sectors of fixed topology
- here:
 - role of quark mass played by diquark sources
 - matching of the coefficients yields sum rules for the inverse singular values

Leutwyler-Smilga-type sum rules for theory I

• static limit of effective partition function for theory I:

$$Z_{\text{eff}}^{I}(J_{L}, J_{R}) = \int_{\text{SU}(N_{f})/\text{Sp}(N_{f})} d\Sigma_{L} d\Sigma_{R} \int_{\text{U}(1)} dV \exp\left\{V_{4}\Phi_{I} \operatorname{Re} \operatorname{tr}(J_{L}\Sigma_{L} - J_{R}\Sigma_{R})V\right\}$$

introduce θ -dependence by $J_L \to J_L e^{-i\theta/N_f}$ and $J_R \to J_R e^{i\theta/N_f}$

• after some algebra (using results of Dalmazi-Verbaarschot 2001) we obtain, e.g.,

$$\left\langle \sum_{n}^{\prime} \frac{1}{\xi_{Ln}^{2}} \right\rangle_{v} = \left\langle \sum_{n}^{\prime} \frac{1}{\xi_{Rn}^{2}} \right\rangle_{v} = 2(V_{4}\Phi_{I})^{2}A_{\alpha}$$

$$\left\langle \left(\sum_{n}^{\prime} \frac{1}{\xi_{Ln}^{2}}\right)^{2} \right\rangle_{v} = \left\langle \left(\sum_{n}^{\prime} \frac{1}{\xi_{Rn}^{2}}\right)^{2} \right\rangle_{v} = 8(V_{4}\Phi_{I})^{4}B_{\alpha}$$

$$\left\langle \sum_{n}^{\prime} \frac{1}{\xi_{Ln}^{4}} \right\rangle_{v} = \left\langle \sum_{n}^{\prime} \frac{1}{\xi_{Rn}^{4}} \right\rangle_{v} = 4(V_{4}\Phi_{I})^{4}C_{\alpha}$$

$$\left\langle \left(\sum_{m}^{\prime} \frac{1}{\xi_{Rm}^{2}}\right) \left(\sum_{n}^{\prime} \frac{1}{\xi_{Ln}^{2}}\right) \right\rangle_{v} = 4(V_{4}\Phi_{I})^{4}A_{\alpha}^{2}$$

$$A_{\alpha} = \frac{1}{2(\alpha+2)}, B_{\alpha} = \frac{\alpha+1}{8\alpha(\alpha+2)(\alpha+3)}, C_{\alpha} = \frac{1}{4\alpha(\alpha+2)(\alpha+3)}, \alpha = N_{f} + |v| - 3$$

with

after similar manipulations we obtain

$$Z_{\nu}^{\text{eff}}(J_L, J_R)$$
 of theory $\mathbf{H} = \left[Z_{\nu}^{\text{eff}}(J_L, J_R) \text{ of theory } \mathbf{I} \right]_{\Phi_{\mathbf{I}} \to \Phi_{\mathbf{H}}} \times \frac{I_{\nu}(\kappa)}{I_0(\kappa)}$

with $\kappa = 2 V_4 \tilde{f}_0^2 m_{\rm inst}^2 / N_f$

- LS-type sum rules same as for theory I
- relative factor goes to 1 for $\kappa \to \infty$ for finite κ nontrivial topologies are suppressed (and eliminated for $m_{inst} = 0$)
- in summations over v, relative factor needs to be taken into account
- calculation for theory L involves integration over SU(2N_f)/Sp(2N_f) and a more complicated integrand

→ only partial results for $N_f = 2$, where SU(4)/Sp(4) \simeq SO(6)/SO(5) $\simeq S^5$ (Brauner 2006)

$$\left\langle \sum_{n}^{\prime} \frac{1}{\xi_{n}^{2}} \right\rangle_{v=0} = 2(V_{4}\Phi_{L})^{2} \left(\frac{z}{e^{z} - z - 1} + 1 - \frac{2}{z} \right) \quad \text{with} \quad z = 8\mu^{2}F^{2}V_{4}$$

Random matrix theory

- as usual, the ε -regimes can be described by RMT
- RMT for theory I ($A_{L/R}$ are real $N \times (N + v)$ matrices):

$$Z_{v}^{\mathsf{RMT}}(\hat{J}_{L},\hat{J}_{R},\hat{M}) = \int dA_{L} \, dA_{R} \, e^{-N \operatorname{tr}(A_{L}^{T}A_{L}+A_{R}^{T}A_{R})} \operatorname{Pf} \begin{pmatrix} \hat{J}_{L} & A_{L} & -\hat{M}^{T} & 0\\ -A_{L}^{T} & \hat{J}_{L}^{\dagger} & 0 & -\hat{M}^{\dagger}\\ \hat{M} & 0 & -\hat{J}_{R}^{\dagger} & -A_{R}\\ 0 & \hat{M}^{*} & A_{R}^{T} & -\hat{J}_{R} \end{pmatrix}$$

- relation between RMT sources and physical sources:
 - $\hat{J}_i = J_i V_4 \Phi_1 / \sqrt{2N}$ at all densities
 - at high density, $\hat{M} = M \sqrt{3V_4/N} \Delta/2\pi$ (Kanazawa-TW-Yamamoto 2009) at lower density, mass scale not known
- in the chiral limit:
 - RMT factorizes into right- and left-handed part
 - ρ̂_{sv}(ξ) and higher-order correlations of singular values can be obtained by
 matching to results of Nagao-Forrester (1995) and Nagao-Nishigaki (2000)

 → determine Φ on the lattice by fit to ρ̂_{sv}(ξ)
 - LS method fails for some parameters, but sum rules can still be obtained as moments of the microscopic correlation functions

- RMT for theory **H** same as for **I** (for fixed v)
- RMT for theory **L** (*C* and *D* are real $N \times (N + v)$ matrices):

$$Z_{v}^{\mathsf{RMT}}(\hat{\mu}, \hat{J}_{L}, \hat{J}_{R}, \hat{M}) = \int dC \, dD \, e^{-2N \operatorname{tr}(C^{T}C + D^{T}D)} \\ \times \operatorname{Pf} \begin{pmatrix} \hat{J}_{L} & C - \hat{\mu}D & -\hat{M}^{T} & 0 \\ -C^{T} + \hat{\mu}D^{T} & \hat{J}_{L}^{\dagger} & 0 & -\hat{M}^{\dagger} \\ \hat{M} & 0 & -\hat{J}_{R}^{\dagger} & -C - \hat{\mu}D \\ 0 & \hat{M}^{*} & C^{T} + \hat{\mu}D^{T} & -\hat{J}_{R} \end{pmatrix}$$

• relation between RMT sources and physical sources:

 $\hat{\mu}^2 = 2\mu^2 F^2 V_4 / N$, $\hat{M} = M V_4 \Phi_L / 2N$, $\hat{J}_i = J_i V_4 \Phi_L / 2N$

• for $\hat{\mu} = 1$ ("maximum non-Hermiticity"), RMT(L) reduces to RMT(I) consistency check: $\lim_{z \to \infty} (\text{sum rule for L}) = (\text{sum rule for I})$

- Introduction
- eigenvalues and singular values of the Dirac operator
 - Index theorem for non-Hermitian Dirac operator
- Phases of two-color QCD
- Banks-Casher-type relation for diquark condensate
- Low-energy effective theories with diquark sources at nonzero density
- Smilga-Stern-type relations
- Finite-volume analysis
 - *ɛ*-regime
 - Leutwyler-Smilga-type sum rules
 - Random matrix theories

Conclusions and outlook

- rigorous index theorem for non-Hermitian Dirac operator
- new analytical results for the singular value spectrum in two-color QCD at µ ≠ 0:
 - effective theories at low, intermediate, and high density
 - Banks-Casher-type relation: $\langle \psi \psi \rangle \sim \rho_{\rm sv}(0)$
 - Smilga-Stern-type relations: slope $\rho'_{sv}(0)$
 - · Leutwyler-Smilga-type sum rules for inverse singular values
 - ε-regimes and random matrix theories
- ullet results allow for alternative determination of $\langle\psi\psi
 angle$ on the lattice at any μ
 - \rightarrow conjectured BEC-BCS crossover could be confirmed numerically
- implications for three-color QCD?
 - diquark source no longer gauge-invariant (but $|\langle\psi\psi
 angle|$ is)
 - how about the gauge-invariant four-quark condensate?
 - how is spectrum of D(µ)[†]D(µ) related to physical observables?