Finite density phase transition of 3 flavor QCD

Yoshifumi Nakamura

RIKEN AICS

in collaboration with

X.-Y. Jin, Y. Kuramashi, S. Takeda & A. Ukawa

27 Jul 2012

Finite density study

Overview

- rich phase structure in $T \mu$ plane
- heavy-ion collision experiments, the early universe, neutron star
- on LQCD study, sign problem, many studies by KS fermion
- on LQCD study, to find the critical endpoint is as hard as looking for a small island in the ocean on a boat
- on LQCD study, many simulation parameters (L_s, L_t, β, am_u, am_d, am_s, aµ, we are interested in physics in the limits of V → ∞ and a → 0 at the physical point)
- on LQCD study, so far lattice size is small, lattice spacing is very coarse

Motivation

- we test phase quenched generation + reweighting with exact phase method on larger lattice
- finally we want to determine the critical endpoint precisely by pushing L_s , β , κ with Wilson type fermion

Simulation at finite chemical potential

Integrating out the Grassmann variables in the partition function,

$$Z = \int DU e^{-S_g} (\det D)^{N_f}$$

$$D = 1 + \frac{i}{2} \kappa c_{SW} \sigma_{\mu\nu} F_{\mu\nu} \delta_{y,x} - \kappa \Big[\sum_{i=1}^3 (T_i^+ + T_i^-) + e^{a\mu} T_4^+ + e^{-a\mu} T_4^- \Big]$$

$$T_{\mu}^{\pm} = (1 \mp \gamma_{\mu}) U_{\pm} \delta_{y,x \pm \mu}$$

probabilistic interpretation is necessary for Monte Carlo simulations,

det
$$D(\mu) \in \mathbb{C}$$
 for $\mu \in \mathbb{R}$

Proposed method

- Taylor expansion method: Allton et al. (2002)
- Analytic continuation Imaginary chemical potential: de Forcrand & Philipsen (2002)
- Reweighting: Fodor & Katz (2001)
- Canonical approach: de Forcrand (2006), Kentucky (2010)
- Density of state method: Fodor et al. (2007)
- Histgram method: WHOT-QCD (2011)

Phase quenched simulation and reweighting

Our approach

$$Z = \int DUe^{-S_g} (\det D(\mu))^{N_f} = \int DUe^{-S_g} |\det D(\mu)|^{N_f} e^{iN_f\theta}$$
$$= \int DUe^{-S_g} \det D^{\dagger}(\mu)^{N_f/2} \det D(\mu)^{N_f/2} e^{iN_f\theta}$$
$$= \int DUe^{-S_g} [\det D^{\dagger}(\mu)D(\mu)]^{N_f/2} e^{iN_f\theta}$$

• generate gauge field configurations with weight: phase quenched action is invariant under ${\cal T}$ transformation

$$e^{-S_g + \ln \det[D^{\dagger}(\mu)D(\mu)]^{N_f/2}}$$

- reweight with exact phase: $\theta(U) = -\theta(\mathcal{T}U)$
 - phase calculation by reduction technique [Danzer & Gabringer (2008)]

$$\langle O \rangle = \frac{\langle O e^{iN_f \theta} \rangle}{\langle \cos(N_f \theta) \rangle}$$

Simulations

- $L_s = 10, 8, 6$ (statistics: 2000, 3000, 8000), $L_t = 6$
- β = 1.77 (Iwasaki)
- $\kappa = 0.1371$ to $\kappa = 0.13975$ (np clover)
- $a\mu = 0.1$ and $a\mu = 0.2$
- algorithm: mass preconditioning for 2 of 3 flavors and RHMC for 1 flavor, multiple time scale, Omelyan integrator
- ocomputer: K & GPU-cluster@AICS, HA-PACS@Tsukuba, FX10@Tokyo
- physical scale $a^{-1} \sim 1.28$ GeV, $m_{\pi} \sim 400 1200$ MeV (very preliminary)

no finite size correction

Topological charge susceptibility

- topological charge is measured with the cooling method
- typical behavior around transition point is observed at $\mu \neq 0$ as well as at $\mu = 0$
- ullet phase changes at larger quark masses by increasing μ
- L_s dependence is small

Reweighting factor near transition

 $a\mu = 0.2$

- all reweighting factors are finite at all simulating points
- smaller reweighting factor for larger lattice size, phase increases as L³_s
- reweighting factor drops near transition

Higher moments

i-th derivative of weight with respect to control parameter *c*:

$$Q_i = \frac{\partial^i}{\partial c^i} e^{-S_g} (\det D)^{N_f}$$

Variance

$$V = \frac{\partial^2 \ln Z}{\partial c^2} = \langle Q_2 \rangle - \langle Q_1 \rangle^2$$

Skewness

e.g. right-skewed \rightarrow S > 0 , left-skewed \rightarrow S < 0

$$S = \frac{1}{V^{\frac{3}{2}}} \frac{\partial^3 \ln Z}{\partial c^3} = \frac{\langle Q_3 \rangle - 3 \langle Q_2 \rangle \langle Q_1 \rangle + 2 \langle Q_1 \rangle^3}{V^{\frac{3}{2}}}$$

Kurtosis

e.g. Gaussian $\rightarrow K = 0$, uniform $\rightarrow K = -1$, 2δ func. $\rightarrow K = -2$

$$K = \frac{1}{V^2} \frac{\partial^4 \ln Z}{\partial c^4} = \frac{\langle Q_4 \rangle - 4 \langle Q_3 \rangle \langle Q_1 \rangle - 3 \langle Q_2 \rangle^2 + 12 \langle Q_2 \rangle \langle Q_1 \rangle^2 - 6 \langle Q_1 \rangle^4}{V^2}$$
$$= B_4 - 3$$

of action density at $a\mu = 0.2$

- typical N-shape skewness and M-shape kurtosis appear around transition
- 1st order phase transition may be close

Polyakov loop susceptibility

Normalized quark number susceptibility

Order of transition

- $K \sim -0.5$, small V dependence up to $L_s = 10$
- K is approaching to 0 for some observables as increasing V

Summary

- we reported preliminary results on finite density phase transition of 3 flavor QCD at $\beta = 1.77$, $L_t = 6 a\mu = 0.1$ and 0.2
- in finite size study up to $L_s = 10$, no clear sign of 1^{st} or 2^{nd} order phase transition for $T \sim 200$ MeV $m_{\pi} \sim 900$ MeV, more statistics/larger volume?
- probably, better/easier to decrease T and m_{π} to find 1st order phase transition
- future direction: decreasing $T(L_t = 8, 10...)$, we expect
 - m_{π}^{crit} decreases (hopefully ~ 400 MeV)
 - 1st order phase transition becomes closer because of smaller m_{π}
 - phase transition occur at smaller $a\mu$
 - even at smaller m_{π} phase could be controllable by larger L_t

 $|\theta| \le 12L_s^3(2\kappa)^{L_t}\sinh(a\mu L_t)$

Takeda, Kuramashi, Ukawa (2011)

backup slides

 $\beta = 1.70, \kappa = 0.1371, 6^4$ and $\beta = 1.77, \kappa = 0.13767, 8^4$

Phase

Plaquette at $a\mu = 0.1$

Action density at $a\mu = 0.1$

Polyakov loop at $a\mu = 0.1$

19/13

L^{*} at $a\mu = 0.1$

Quark number at $a\mu = 0.1$

Plaquette at $a\mu = 0.2$

^{22/13}

Action density at $a\mu = 0.2$

23/13

Polyakov loop at $a\mu = 0.2$

L^{*} at $a\mu = 0.2$

Quark number at $a\mu = 0.2$

Plaquette at $\kappa = 0.1383$

Action density at $\kappa = 0.1383$

Polyakov loop at $\kappa = 0.1383$

L^{*} at $\kappa = 0.1383$

30/13

Quark number at $\kappa = 0.1383$

