Two topics from lattice NRQCD at non-zero temperature: heavy quark mass dependence and S-wave bottomonium states moving in a thermal bath

Seyong Kim

Sejong University

G. Aarts, C. Allton(Swansea), M.P. Lombardo(Frascati), M.B. Oktay(Utah), S.M. Ryan (Trinity), D.K. Sinclair(Argonne), J.I. Skullerud(NUIM)
Outline

1. Results
2. Method
3. Conclusion
Last year’s result

- JHEP 11 (2011) 103

1S peak survives, 2S and higher peaks merge and become a broad peak as T increases (melting)

- last year, CMS collaboration observed disappearance of 2S and 3S upsilon state in Pb-Pb collisions
two different ways of quarkonium production in QGP:

1) production through hard process \rightarrow comoving $b - \bar{b}$ pair (moving in a thermal bath)

2) production through recombination (not likely) \rightarrow not moving in a thermal bath
(1) Upsilon moving in a thermal bath

NRQCD_20n sonia_20n_ spp_i_000 K=.00000,.00000 # 2

\[t = 1-19 \text{ Err=J Sym=N #cfgs=1000 #cfg/clus= 1} \]

\[\rho(\omega) \]

-0.2 0 0.2 0.4 0.6 0.8 1

-0.2 0 0.2 0.4 0.6 0.8 1

\[\omega \]
(1) Upsilon moving in a thermal bath

- Observable heavy quarkonium velocity \(\left(\frac{v_{\Upsilon}^2}{c^2} \right) \sim 0.03 \) effect on the S-wave state mass (NR dispersion \(\sim \frac{\vec{p}^2}{2M_{\Upsilon}} \))
(1) Upsilon moving in a thermal bath

- no observable ν^2_{Upsilon} effect on the S-wave state “width” (Escobedo et al., PRD84 (2011) 016008, $\Gamma_\nu/\Gamma_0 \sim 1 - \frac{2}{3} \nu^2_{\text{Upsilon}}$)

![Graph showing the effect of Upsilon moving in a thermal bath with data points and a trend line.](image-url)
(2) Heavy quark mass dependence

- At a given τ, the ratio $R(M,T)(\tau) \sim e^{-(E(M,T)-E(M,T=0))\tau}$ since $G(\tau) \sim e^{-\Delta E \tau}$.

Define $\delta_1(\tau = 14) = R(M_2, T_1) - R(M_1, T_1)$ and $\delta_2(\tau = 14) = R(M_1, T_1) - R(M_1, T_2)$. Then $\delta_2 > \delta_1$.

Temperature effect (ΔT) is larger than mass effect (ΔM).
Lattice NRQCD

- NRQCD is an effective field theory and is expansion in v, the heavy quark velocity in heavy quarkonium

- used for accurate calculation of quarkonium property at zero temperature

- $\frac{T}{M}$ is small for $T \sim 170$ (MeV) and $M \sim 5000$ (MeV) for bottomonium at the range of non-zero temperature we are interested in

- calculate bottomonium correlator in the background color gauge field which has dynamical light quark effect and finite temperature effect

- usually the number of lattice sites in the time direction is smaller than that that in the space direction since $T = \frac{1}{N_t a}$ \rightarrow we use anisotropic lattice
Lattice NRQCD

- Anisotropic lattice on $12^3 \times N_t$ (ref. G. Aarts et al, PRD 76 (2007) 094513)

<table>
<thead>
<tr>
<th>N_s</th>
<th>N_t</th>
<th>a_t^{-1}</th>
<th>T(MeV)</th>
<th>T/T_c</th>
<th>No. of Conf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>80</td>
<td>7.35GeV</td>
<td>90</td>
<td>0.42</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>7.35GeV</td>
<td>230</td>
<td>1.05</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>28</td>
<td>7.35GeV</td>
<td>263</td>
<td>1.20</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>7.35GeV</td>
<td>306</td>
<td>1.40</td>
<td>500</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>7.35GeV</td>
<td>368</td>
<td>1.68</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>7.35GeV</td>
<td>408</td>
<td>1.86</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>7.35GeV</td>
<td>458</td>
<td>2.09</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table: summary for the lattice data set

- $N_f = 2$, two-plaquette Symanzik improved gauge action, fine-Wilson, coarse-Hamber-Wu fermion action with stout-link smearing
Lattice NRQCD

- Non-relativistic QCD in FT

\[G(\vec{x}, t = 0) = S(x) \] \hspace{1cm} (1)

\[G(\vec{x}, t = 1) = \left[1 + \frac{1}{2n} \frac{\vec{D}^2}{2m_b^0} \right]^n U^\dagger_4(\vec{x}, t) \left[1 + \frac{1}{2n} \frac{\vec{D}^2}{2m_b^0} \right]^n G(\vec{x}, 0) \] \hspace{1cm} (2)

\[G(\vec{x}, t + 1) = \left[1 + \frac{1}{2n} \frac{\vec{D}^2}{2m_b^0} \right]^n U^\dagger_4(\vec{x}, t) \left[1 + \frac{1}{2n} \frac{\vec{D}^2}{2m_b^0} \right]^n [1 - \delta H] G(\vec{x}, t) \] \hspace{1cm} (3)
where $S(x)$ is the source and

$$\delta H = -\frac{(\vec{D}(2))^2}{8(m_b^0)^3} + \frac{ig}{8(m_b^0)^2}(\vec{D} \cdot \vec{E} - \vec{E} \cdot \vec{D})$$

$$- \frac{g}{8(m_b^0)^2}\vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D}) - \frac{g}{2m_b^0}\vec{\sigma} \cdot \vec{B}$$

$$+ \frac{a^2 \vec{D}(4)}{24m_b^0} - \frac{a(\vec{D}(2))^2}{16n(m_b^0)^2}$$

(1)

• momentum injection to quarkonium in $S(x)$
MEM for NRQCD

\[G_\Gamma(\tau) = \sum \langle \bar{\psi}(\tau, \vec{x}) \Gamma \psi(\tau, \vec{x}) \bar{\psi}(0, \vec{0}) \Gamma \psi(0, \vec{0}) \rangle \tag{2} \]

\[= \int \frac{d^3 \rho}{(2\pi)^3} \int_0^\infty \frac{d\omega}{2\pi} K(\tau, \omega) \rho_\Gamma(\omega, \vec{p}) \tag{3} \]

and

\[K(\tau, \omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)} \tag{4} \]

With \(\omega = 2M + \omega' \) and \(T/M << 1 \),

\[G(\tau) = \int_{-2M}^\infty \frac{d\omega'}{2\pi} \exp(-\omega'\tau) \rho(\omega') \tag{5} \]

- unlike QCD case, the NRQCD kernel is independent of \(T \)
- Scale \(M \) is absent \(\rightarrow \) smaller range of \(\omega \) to consider
- obtaining spectral function in NRQCD is equivalent to inverse Laplace
MEM for NRQCD

NRQCD_20n sonia_20n_ spp_i_000 K=0.00000,0.00000 # 2

t = 1-19 Err=J Sym=N #cfgs=1000 #cfg/clus= 1
Using NRQCD formalism in non-zero temperature, we see observable ν^2 effect on the energy of S-wave state moving in thermal bath but no observable effect on the width of S-wave state moving in thermal bath for $\nu^2_{\text{upsilon}} \sim 0.3$

Temperature effect is more important than the heavy quark mass effect in S-wave bottomonium at the temperature around a few T_c.

\rightarrow NRQCD as an effective theory for bottomonium in non-zero temperature is a consistent theory.