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• Coupling gets weak as T gets large

• Modify action to restore Z(N) symmetry  
and force the theory to be Abelian at 
large distances

‣ double trace deformation        
(Meyers and mco, 2008)

‣ adjoint fermions (Unsal, 2008)

• A4 behaves as a 3d scalar with a 
center-symmetric expectation value; 
Euclidean monopoles solutions!

High-T confinement on R3 x S1 	 (1)
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• Euclidean monopoles are constituents 
of instantons (Lee & Yi, 1997, Kraan & van Baal 
1998)  and confine (Unsal 2008; Unsal and 
Yaffe, 2008)

• Dimensional reduction

• Confinement as in 3d Georgi-Glashow 
model (Polyakov 1976) by monopole gas

• Monopole gas is represented by a 
sine-Gordon

High-T confinement on R3 x S1 	 (2)
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High-T confinement on R3 x S1 	 (3)

• Positive HA   promotes Z(2) 
breaking and decreases the 
deconfinement temperature

• Negative HA   increases the 
deconfinement temperature

• Deconfinement transition 
changes from 2nd-order to 
1st at tricritical point (non-
universal- H. Nishimura & mco, 2012)

• Reach region of high-T 
semiclassical confinement
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• Asymptotically free (like QCD)

• instantons (like QCD):

• XY model vortices emerge as constituents 
of instantons (like monopoles in QCD)

• Can deform O(3) model into an XY model

O(3) model in d=2 	 (1)
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Lattice duality (Jose et al. 1977)
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Character expansion:

O(3) model in d=2 	 (2)



Villain approximation:
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Poisson resummation:

nµ(x) = ✏µ⌫r⌫m(X) X on dual lattice
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O(3) model in d=2 	 (3)



sine-Gordon approximation:

Keep only m=1 contributions with y=1
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• Continuous path between O(3) model and XY model vortex-dominated phase

• Large h: σ3 =0  recovers XY model and set Keff = K

• Intermediate h: h sets scale of vortex core

• Behavior of σ3 at vortex core doubles number of vortices as with instantons

• Works for O(N)  as well as O(3) 

Comments:

O(3) model in d=2 	 (4)



• Double-trace deformation forces 
center-symmetry. A4 behaves as a 3d 
scalar 

• Non-Abelian degrees of freedom get 
large masses due to HA. Obtain U(1) 
effective lattice gauge theory in d=3

• Abelian lattice duality gives a 3d sine-
Gordon theory (Banks et al 1977)

High-T confinement for lattice SU(2) in d=4	 	 (1)

• d=2: links are 
dual to links

• d=3: plaquettes 
are dual to links
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Conclusions
• Non-Abelian lattice theories deformed to Abelian effective theories work in 

the same way as their continuum counterparts

• Lattice duality closely related to semiclassical continuum duality

• Continuous path between confined phase of SU(2) and the monopole-
dominated phase of lattice U(1) gauge theory.

• Lattice theories know something about topology, but not about BPS bounds 
and correct RG scaling

• Vortices and monopoles may be important features even when no stable 
instantons exist as in 2d O(N) models (cf. Argyres and Unsal 2012)

• Many interesting problems to explore, on and off the lattice!


