Model approach to the sign problem on lattice QCD with theta vacuum

Phys. Rev. D85, 056009 (2012).

Takahiro Sasaki Kyushu University, Japan

June 26 Lattice 2012, Cairns, Australia

Theta vacuum

The QCD vacuum is a superposition of vacua characterized by winding number n.

$$\left|\theta\right\rangle = \sum_{n} e^{in\theta} \left|n\right\rangle$$

Then QCD effective Lagrangian is required an extra term.

$$\mathcal{L} = \sum_{f} \bar{q}_{f} (\gamma_{\nu} D_{\nu} + m_{f}) q_{f} + \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu} - i\theta \frac{g^{2}}{64\pi^{2}} \epsilon_{\mu\nu\sigma\rho} F^{a}_{\mu\nu} F^{a}_{\sigma\rho}$$

At zero temperature, experimental measurement of neutron dipole moment gives the upper limit : $|\theta| < 10^{-10}$

There is no theoretical interpretation for this property (Strong CP problem).

At finite temperature, the behavior of theta is nontrivial.

$$\mathcal{L}_{\text{QCD}} = \bar{q}_{f}(\gamma_{\nu}D_{\nu} + m_{f})q_{f} + \frac{1}{4}F_{\mu\nu}^{a}F_{\mu\nu}^{a} - i\theta\frac{1}{64\pi^{2}}\epsilon_{\mu\nu\sigma\rho}F_{\mu\nu}^{a}F_{\sigma\rho}^{a}$$

$$U_{A}(1) \text{ transformation} \cdot \text{Complex}$$

$$\cdot \text{Complex} \cdot \text{Topological effect}$$

$$\mathcal{L}_{\text{QCD}}' = \bar{q}_{f}'(\gamma_{\nu}D_{\nu} + m_{f}(\theta))q_{f}' + \frac{1}{4}F_{\mu\nu}^{a}F_{\mu\nu}^{a}$$

$$\text{This parity-odd term}$$
makes fermion determinant complex.

Lattice QCD simulation

- •Estimate the probability distribution of the topological number
- Taylor expansion around $\theta = 0$

Ref: M. D'Elia and F. Negro, arXiv:1205.0538 [hep-lat] (2012)

$$\mathcal{L}_{QCD} = \bar{q}_f (\gamma_\nu D_\nu + m_f) q_f + \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} - i\theta \frac{g^2}{64\pi^2} \epsilon_{\mu\nu\sigma\rho} F^a_{\mu\nu} F^a_{\sigma\rho}$$

$$\begin{aligned} & \underbrace{\operatorname{SU}_{A}(3) \otimes \operatorname{U}_{A}(1) \text{ transformation}}_{q_{u} = e^{i\gamma_{5}\frac{\theta}{4}}q'_{u}}_{q_{d} = e^{i\gamma_{5}\frac{\theta}{4}}q'_{d}}_{q_{d} = e^{i\gamma_{5}\frac{\theta}{4}}q'_{d}}_{q_{s} = q'_{s}} \end{aligned}$$

$$\mathcal{L}_{QCD} = \sum_{l=u,d} \bar{q}'_{l}\mathcal{M}_{l}(\theta)q'_{l} + \bar{q}'_{s}\mathcal{M}_{s}q'_{s} + \frac{1}{4}F^{a}_{\mu\nu}F^{a}_{\mu\nu}_{\mu\nu}$$

$$\mathcal{M}_{l}(\theta) \equiv \gamma_{\nu}D_{\nu} + m_{l}\cos(\theta/2) + m_{l}i\gamma_{5}\sin(\theta/2),$$

$$\mathcal{M}_{s} \equiv \gamma_{\nu}D_{\nu} + m_{s}.$$
Much smaller than the QCD scale

Suggestion

$$\mathcal{L}_{QCD} = \sum_{l=u,d} \bar{q}'_{l} \mathcal{M}_{l}(\theta) q'_{l} + \bar{q}'_{s} \mathcal{M}_{s} q'_{s} + \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu}$$
$$\mathcal{M}_{l}(\theta) \equiv \gamma_{\nu} D_{\nu} + m_{l} \cos{(\theta/2)} + m_{l} i \gamma_{5} \sin{(\theta/2)},$$
$$\mathcal{M}_{s} \equiv \gamma_{\nu} D_{\nu} + m_{s}.$$
$$\mathcal{M}'_{l}(\theta) \equiv \gamma_{\nu} D_{\nu} + m_{l} \cos{(\theta/2)} \text{ Neglect the P-odd mass}$$

Reweighting Method

$$\langle \mathcal{O} \rangle = \int \mathcal{D}A \ \mathcal{O}' \left(\det \mathcal{M}'_l(\theta) \right)^2 \det \mathcal{M}_s e^{-S_g}$$

$$\mathcal{O}' \equiv \mathcal{O} \frac{\left(\det \mathcal{M}_l(\theta) \right)^2}{\left(\det \mathcal{M}'_l(\theta) \right)^2} \approx \mathcal{O}$$
 Free from the sign problem

 $\det \mathcal{M}'_l(\theta)$: Fermion determinant without P odd mass

Entanglement PNJL model

2+1 flavor Polyakov-loop extended Nambu-Jona-Lasinio model $\mathcal{L} = \bar{q}_f (\gamma_\nu D_\nu + \hat{m}_f) q_f - G_{\rm S}(\Phi) \sum \left[(\bar{q}\lambda_a q)^2 + (\bar{q}i\gamma_5\lambda_a q)^2 \right]$ $+G_{\rm D}\left[\det \bar{q}_{f}(1-\gamma_{5})q_{f'} + \det \bar{q}_{f}(1+\gamma_{5})q_{f'}\right] + \mathcal{U}(T,\Phi[A],\Phi^{*}[A])$ $q = (q_u, q_d, q_s)$ Kobayashi-Maskawa-'t Hooft interaction $\hat{m}_0 = ext{diag}(m_u, m_d, m_s)$ • breaks the $U_{\rm A}(1)$ symmetry explicitly • Determinant is taken in the flavor space. Entanglement vertex

$$G_S(\Phi) = G_S \left[1 - \alpha_1 \Phi \Phi^* - \alpha_2 (\Phi^3 + \Phi^{*3}) \right]$$

= + + + ···

Ref : Y. Sakai, T. S., H. Kouno, and M. Yahiro, Phys. Rev. D82, 076003 (2010) K. –I. Kondo, Phys. Rev. D82, 065024 (2010)

Entanglement PNJL model

Properties of EPNJL and PNJL model

	PNJL model	EPNJL model
Transition temperature T_c	$\bigcirc (Deconfinement) \\ \bigtriangleup (Chiral)$	0
Equation of state	(Qualitatively)	(Qualitatively)
Roberge-Weiss periodicity (for imaginary µ)[1]	0	0
Quark mass dependence of RW end point [2,3]	×	0

[1] A. Roberge and N. Weiss, Nucl. Phys. B275, 734 (1986)

[2] P. de Forcrand and O. Philipsen, Phys. Rev. Lett. **105**, 152001 (2010)

[3] T. S., Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D84, 091901 (2011)

EPNJL model with theta vacuum

EPNJL model with theta vacuum $\mathcal{L} = \bar{q}_f (\gamma_\nu D_\nu + \hat{m}_f) q_f - G_{\rm S}(\Phi) \sum \left[(\bar{q}\lambda_a q)^2 + (\bar{q}i\gamma_5\lambda_a q)^2 \right]$ + $G_{\mathrm{D}}\left[e^{i\theta}\mathrm{det}\bar{q}_{f}(1-\gamma_{5})q_{f'}+e^{-i\theta}\mathrm{det}\bar{q}_{f}(1+\gamma_{5})q_{f'}\right]+\mathcal{U}(T,\Phi[A],\Phi^{*}[A])$ $SU_A(3) \otimes U_A(1)$ transformation $\mathcal{L} = \bar{q}_f'(\gamma_\nu D_\nu + \underline{m_f(\theta)})q_f' - G_{\rm S}(\Phi) \sum \left[(\bar{q}'\lambda_a q')^2 + (\bar{q}'i\gamma_5\lambda_a q')^2 \right]$ $+G_{\rm D}\left[\det \bar{q}'_{f}(1-\gamma_{5})q'_{f'} + \det \bar{q}'_{f}(1+\gamma_{5})q'_{f'}\right] + \mathcal{U}(T,\Phi[A],\Phi^{*}[A])$ $\begin{cases} m_u(\theta) &= m_l \cos(\theta/2) + i\gamma_5 m_l \sin(\theta/2) \\ m_d(\theta) &= m_l \cos(\theta/2) + i\gamma_5 m_l \sin(\theta/2) \\ m_s(\theta) &= m_s \end{cases}$ Expected : These effects are much smaller than the scale of chiral symmetry breaking.

EPNJL model with theta vacuum

$$\mathcal{L} = \bar{q}_f'(\gamma_\nu D_\nu + m_f(\theta))q_f' - G_{\rm S}(\Phi)\sum_{a=0}^{\circ} \left[(\bar{q}'\lambda_a q')^2 + (\bar{q}'i\gamma_5\lambda_a q')^2 \right]$$

+
$$G_{\rm D} \left[\det \bar{q}'_f (1 - \gamma_5) q'_{f'} + \det \bar{q}'_f (1 + \gamma_5) q'_{f'} \right] + \mathcal{U}(T, \Phi[A], \Phi^*[A])$$

0

Meanfield approximation

$$egin{aligned} \sigma_f' &= \langle ar q_f' q_f'
angle \ , \ \eta_f' &= \langle ar q_f' i \gamma_5 q_f'
angle \ \langle ar q' \lambda_a q'
angle &= \langle ar q' i \gamma_5 \lambda_a q'
angle &= 0 \quad (a=0,\cdots,7) \end{aligned}$$

 Φ : Traced Polyakov loop

Partition function : Z Thermodynamic potential : $\Omega = -\frac{1}{\beta} \ln Z$

Stationary condition

Meanfields are determined by the stationary condition.

$$\frac{\partial \Omega}{\partial X} = 0 \quad (X = \sigma'_l, \sigma'_s, \eta'_l, \eta'_s, \Phi, \Phi^*)$$

With parity odd mass

Without parity odd mass

Without parity odd mass

Phase structure

Transition order of chiral transition

C : Critical endpoint at $\theta = 0$

There is a possibility that the cosmic evolution is changed at QCD epoch if theta is large

EPNJL Model

Lattice data :

M. D'Elia and F. Negro, arXiv:1205.0538 [hep-lat] (2012) The next speaker

Summary

Reweighting Method

$$\langle \mathcal{O} \rangle = \int \mathcal{D}A \ \mathcal{O}' \left(\det \mathcal{M}'_l(\theta) \right)^2 \det \mathcal{M}_s e^{-S_g} \\ \mathcal{O}' \equiv \mathcal{O} \frac{\left(\det \mathcal{M}_l(\theta) \right)^2}{\left(\det \mathcal{M}'_l(\theta) \right)^2} \quad \det \mathcal{M}'_l(\theta) : \text{Fermion determinant} \\ \text{without P odd mass}$$

EPNJL model prediction

QCD transition at zero chemical potential may be 1st order when theta is large.