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1) Introduction.

SU(3) gauge theory phase diagram in the T — @ plane.
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1) Introduction.

Our aim:
1) Study if and how the deconfinement transition temperature
depends on the topological #-term.

T(0)
T(0)

=1— Ryb* + 0(6%)
2) Perform a large-N, estimation of this dependence.

3) Compare these calculations.
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2) Topological 6-term and sign problem.

We consider the following continuum action in euclidean metric:
S=Sym+ 5
The pure gauge term:
Sym = —1/d4X Fa, (x)F 2 (x)
4 1 p

and the topological 6-term:

Sy = —/96502 /d4x €pvpo F i (X) Fop(X) = —i9/d4x q(x) = —i0Q[A]
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2) Topological 6-term and sign problem.

LGT techniques are based on the possibility to interpret the
partition function integrand

Z(T.0) = / D[A] e = 10QlA

as a probability distribution for the fields A7.
But it is complex! Bad news...  sign problem!

Anyhow LGT are preferred ways to probe the non-perturbative
properties of YM theories.

Can we somehow re-arrange things so that we can apply LGT
techniques to such a model?
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2) Topological 6-term and sign problem.

Via an imaginary ¢ = /0, term we can "solve" the sign problem.
[Azcoiti et al., PRL 2002; Alles and Papa, PRD 2008; Horsley et al.,
arxiv:0808.1428 [hep-lat]; Panagopoulos and Vicari, JHEP 2011]

Analyticity around 6 = 0 is supported by the current knowledge of
the vacuum free energy derivatives with respect to 6 evaluated at
0 =0.

[Alles, D'Elia and Di Giacomo, PRD 2005; Vicari and Panagopoulos, Physics
Reports 2008]

Studying the dependence on 6, we will have access to a (small)
range of real  via analytic continuation.

The continuum partition function to be put on the lattice is:

Z(T,0) = / DIA] e~ Sm—0iQMAl
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3) The lattice discretization.

The topological charge operator can be discretized as:

Lattice

QL[U] = 202 Z Z Guvw ()npo(”))

n uvpo=
Using the Wilson action for Syy the lattice partition function is:

Z(T, 0) :/D[U]G_S{-’M[U]_GLQL[U]

Due to a finite multiplicative renormalization Qy is related to the
integer valued Q by :

QL= Z(B)Q+ 0(a%)

[Campostrini, Di Giacomo and Panagopoulos, Phys Lett B 1988]
So the #-term is also

So=—-0Q =-0Z2(B)Q=—-6,Q



3) The lattice discretization.

In this simple action each link appears linearly.

4

We can exploit standard Heatbath and Overrelaxation algorithms.

It is necessary to modify the staples definition. Pictorically:

— =Link to update
— =Force

With more complicated topological charge definitions on the lattice
such standard algorithms wouldn’t have been applicable.
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4)  Numerical results from LGT.

Z3 center symmetry holds also when we introduce the topological
term in the action.

Deconfinement — spontaneous breaking of Z3 center symmetry.

Order parameter: Polyakov loop
1 Nt—l
L(B,0L) = (L) g, = <v oo ( H Ut(nx, ny, nz, i)>>
Nx,Ny,Nz i=0 ﬂ:eL

At a fixed 0; we find the transition in correspondence of the
susceptibility peak:

xL(B8,01) = Vs (<L2>5,9L o <L>%,9L)

Francesco Negro 6-dependence of deconfinement temperature in YM theories



4)
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Numerical results from LGT: ingredients for Ry.

1) Z(p) in order to determine 0, = Z(3)6,.

Compute @y via the operator previously defined.
Compute Q via cooling algorithm.

Evaluate: (Q.Q)
_ L¥/p

as proposed in [Panagopoulos and Vicari, JHEP 2011]

Simulations were performed on a symmetric 16* lattice for 8 values
of 3 spanning in 5.7 — 6.3.
The results were checked for some 3 on a symmetric 24* lattice.



4)  Numerical results from LGT: ingredients for Ry.

2) Bc(0) in order to measure T.(6;)/T.(0).

For various 0; we search 3. via a Lorentzian fit.

Using the non-perturbative determination of a() in [Boyd et al., Nucl
Phys B 1996] we have:

Te(0r) _ a(be(6 = 0))

Tc(0) a(Be(01))

Where 0/ = Z(/BC)QL
Simulations have been performed for various lattice spacings in
order to approach the continuum limit.

We choose a ~ 1/(4T(0)), a~1/(6T(0)) and a~1/(8T(0)).

The lattices we have used are 163 x 4, 243 x 6 and 323 x 8.
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4)  Numerical results from LGT: Z(3).

Simulation on 16 lattice and polinomial cubic interpolation.
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4)  Numerical results from LGT: 5.(6)).

Determination of 3. e.g. on the 243 x 6 lattice.
L and x; data and S-reweighting analysis.
T T T T T T T T T T T

I I T
" [e8,=0 1
ol | = O =1 Weak
¢ 9, =2 increase
I % in XL
0.08+ HH peak.
L % !
0041 ¢ Stronger
| P P transi-
ge?®® tion?
Ty
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4)  Numerical results from LGT: 5.(6)).

lattice |6y, Be Or T-(6:1)/T:(0)

16" x 4 | 0| 5.6911(4) 0 1
16° x 4 | 5 | 5.6934(6) | 0.370(10) | 1.0049(11)
16° x 4 [10] 5.6990(7) | 0.747(15) | 1.0171(12)
16% x 4 [15] 5.7092(7) | 1.141(20) | 1.0395(11)
( (
( (

16° x 4 |20 5.7248(6) | 1.566(30) | 1.0746(10)
16% x 4 [25[ 5.7447(7) | 2.035(30) | 1.1209(10) Typical

24% x 6 | 0 [ 5.8929(8) 0 1 statistics
24° x 6 | 5 |5.8985(10) |0.5705(60) | 1.0105(24) for each size
24% x 6 [10] 5.9105(5) | 1.168(12) | 1.0335(18) | and for each 6, :
247 x 6 |15 5.9364(8) | 1.836(18) | 1.0834(23)
24 x 6 |20 5.9717(8) | 2.600(24) | 1.1534(24) ~ 10° — 10°

32° x 8 | 0 | 6.0622(6) 0 1
32° x 8 | 5| 6.0684(3) | 0.753(8) | 1.0100
32 x 8 | 8 | 6.0813(6) | 1.224(15) | 1.0312
32% x 8 [10(6.0935(11) | 1.551(20) | 1.0515(21)
32% x 8 [12(6.1059(21) | 1.890(24) | 1.0719(34)
32% x 8 [15] 6.1332(7) | 2.437(30) | 1.1201(17)
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4)  Numerical results from LGT: Ry.

We find: I

1.15-

RY=* =0.0299(7)  wif
x?/d.o.f. ~ 0.3 i

§Jl.05*

RIS = 0.0235(5) &, |
Xz/dof ~ 1.6 |
095

Révtzfi = 0.0204(5) 09

x?/d.o.f. ~ 0.7

0
Tc increases for imaginary coupling then, by analytic continuation,
it decreases for real 6.
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4)  Numerical results from LGT: continuum extrapolation.

Assuming quadratic finite lattice spacing corrections to Ry:
R@’Vt — Recont —l—C/NE
we can extrapolate to the continuum limit to get
R§°™ = 0.0175(7) with x?/d.o.f. ~ 1
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5) Large N estimate.

2 phases with different free
’ T ord — ‘ energy densities crossing at T.
-order transition | — f(Te) = £(Te)

fe(Te) # £3(Te)

Close to T, and using t = (T — T.)/ Tc the free energies are:

f°(Tt) = Act + O(t?) () _ gt v 0(2)

T
From the usual relations:

Vef(T) 2

T
Z=e T e(T)zva-rlogZ

we easily find that the slope difference is related to the latent heat
Ae =€4(Te) —€c(Te) = Te(Ac — Ag)
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5)

Large N, estimate.

When we have 6 # 0 the free energy density is modified by

T 2
F(T.6) = F(T,0 = 0) + X 2)9 + 0(6%)
In the large N, limit x(T) is a step function:
X(T<Te)=x(T=0=x#0 X(T>Tc)=0

[Alles, D’Elia and Di Giacomo, Phys Lett B '96-'97-'00; Del Debbio, Vicari and

Panagopoulos, JHEP 2004; Lucini, Teper and Wenger, Nucl Phys B 2005]

This modifies the free energies in:

fe(t) X6 fa(t)
T

= Act+ >

— Ayt
2T d

T() 1__92

T. is found when f. = f; — -,-C( ) = SAe
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5)

Large N, estimate.

When we have 6 # 0 the free energy density is modified by

T 2
F(T.6) = F(T,0 = 0) + X 2)9 + 0(6%)
In the large N, limit x(T) is a step function:
X(T<Te)=x(T=0=x#0 X(T>Tc)=0

[Alles, D’Elia and Di Giacomo, Phys Lett B '96-'97-'00; Del Debbio, Vicari and
Panagopoulos, JHEP 2004; Lucini, Teper and Wenger, Nucl Phys B 2005]
This modifies the free energies in:

fe(t) X6 fa(t)

— XY ) _ At
T At oT T d

. Tc(0) _ 1 plarge Nc 2
T. is found when f. = f; — —TC(O) =1 R9 0
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5) Large N estimate.

From the large N, estimates in [Lucini, Teper and Wenger, JHEP 2005]:

X Te
—= =0.0221(14 = 0.344(72 = 0.597
= 0.0221(14) 274 0.344(72) Nz 0.5978(38)
we can evaluate Réarge Ne.
0.253(56) 1
Rlarge N¢ _ X _
0 2A¢ N2 +0( Ng)

The argument in [Witten, PRL 1998] supports this dependence on N..
Large-Nc limit — expansion variable 7~ — Rp6?> — Ry xx 5

Let’s recall both our results and compare them in the case N =3.

RS°™ = 0.0175(7) RiEeNe (N, = 3) = 0.0281(62)
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Conclusions

» Use of imaginary 0, parameter to cure sign problem for LGT.
» Deconfinement transition temperature dependence on 6.
» Determination of the quadratic coefficient R§°™.

» Large N. estimate and comparison.

Perspectives:

» Finer lattice spacings to improve continuum limit approach.
» Weaker transition? Finite size scaling study.

» Extend the analysis to SU(2) and SU(4).



7) Backup: conjectured phase diagram.

At least in the large N, limit when only O((6/N.)?) terms are
relevant near § = m we can suppose the phase diagram to show
2nm-periodicity and cusps in 0 = (2k + 1).
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7) Backup: move along 6, = const

Reweighting analysis on all 163 x 4 data.

20

25

20

15

10

0 N h N N N r
5.68 570 572 574 5.76 578

We obtain a 3D plot for the polyakov loop suceptibility:




7) Backup: move along 6, = const

Moving along constant 6, instead of constant 6.
For 8, ~ 0.37 and §; = 5.0

0.0020 b
0.0018 |
0.0016
0.0014
0.0012

o010 F

7T

hoeEs BGa0 bhg2 hbH4 bHHOH  hoHR E.TEJ[]:
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7) Backup: move along 6, = const

Moving along constant 6, instead of constant 6.
For 8, ~ 1.14 and ; = 15.0

0.0020
0.0015

00010

0.0005 F 5705 5710 5715 a0
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7) Backup: move along 6, = const

Moving along constant 6, instead of constant 6.
For 8, ~ 2.04 and 0; = 25.0

D.0020
20015

2,00 10
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