The phase diagram of G₂-QCD

Björn H. Wellegehausen

Theoretisch-Physikalisches Institut Research Training Group (1523) 'Quantum and Gravitational Fields' FSU Jena

with Axel Maas, Lorenz von Smekal and Andreas Wipf

Lattice Conference Cairns, Australia, 26.06.2012

seit 1558

Introduction

- 2 G_2 -QCD in the continuum
- 3 Lattice results
- 4 Zero temperature
- 5 Finite temperature

Introduction

• G_2 is the smallest Lie-group which is simply connected and has a trivial center

• The group has rank 2 and hence possesses two fundamental representations

(7) \sim quark, (14) \sim gluons

• Similar as in SU(3) two or three quarks can build a colour singlet

$$(7)\otimes(7)=(1)\oplus\cdots$$
, $(7)\otimes(7)\otimes(7)=(1)\oplus\cdots$

• In contrast gluons can screen the colour charge of a single static quark $(7)\otimes(14)\otimes(14)\otimes(14)=(1)\oplus\cdots$

• All representations of G_2 are real

- The Polyakov loop is not an order parameter for confinement.
- The flux tube between two static quarks can break due to dynamical gluons.
- No linear rising potential up to arbitrary long distances.

Confinement in G_2 gluodynamic really means

as in QCD

inear rising potential only at intermediate scales

... and on a finite lattice

- The Polyakov loop is an approximate order parameter which changes rapidly at the phase transition and is small (but non-zero) in the confining phase
- First order deconfinement phase transition

K. Holland, P. Minkowski, M. Pepe and U. J. Wiese, Nucl. Phys. B668 (2003) 207

- Casimir scaling at short and intermediate scales
- String breaking in the fundamental and adjoint representation at larger distances
 - B. Wellegehausen, A. Wipf, C. Wozar, Casimir Scaling and String Breaking in G(2) Gluodynamics, Phys.Rev.D83:016001,2011
 - B. Wellegehausen, A. Wipf, C. Wozar, Phase diagram of the lattice G2 Higgs model, Phys. Rev. D 83, 114502 (2011)

- The Polyakov loop is not an order parameter for confinement.
- The flux tube between two static quarks can break due to dynamical gluons.
- No linear rising potential up to arbitrary long distances.

Confinement in G_2 gluodynamic really means

as in QCD

linear rising potential only at intermediate scales

... and on a finite lattice

- The Polyakov loop is an **approximate order parameter** which changes rapidly at the phase transition and is small (but non-zero) in the confining phase
- First order deconfinement phase transition

K. Holland, P. Minkowski, M. Pepe and U. J. Wiese, Nucl. Phys. B668 (2003) 207

- Casimir scaling at short and intermediate scales
- String breaking in the fundamental and adjoint representation at larger distances
 - B. Wellegehausen, A. Wipf, C. Wozar, Casimir Scaling and String Breaking in G(2) Gluodynamics, Phys.Rev.D83:016001,2011
 - B. Wellegehausen, A. Wipf, C. Wozar, Phase diagram of the lattice G2 Higgs model, Phys. Rev. D 83, 114502 (2011)

- The Polyakov loop is not an order parameter for confinement.
- The flux tube between two static quarks can break due to dynamical gluons.
- No linear rising potential up to arbitrary long distances.

Confinement in G_2 gluodynamic really means

as in QCD

linear rising potential only at intermediate scales

... and on a finite lattice

- The Polyakov loop is an approximate order parameter which changes rapidly at the phase transition and is small (but non-zero) in the confining phase
- First order deconfinement phase transition

K. Holland, P. Minkowski, M. Pepe and U. J. Wiese, Nucl. Phys. B668 (2003) 207

- Casimir scaling at short and intermediate scales
- String breaking in the fundamental and adjoint representation at larger distances
 - B. Wellegehausen, A. Wipf, C. Wozar, Casimir Scaling and String Breaking in G(2) Gluodynamics, Phys.Rev.D83:016001,2011
 - B. Wellegehausen, A. Wipf, C. Wozar, Phase diagram of the lattice G2 Higgs model, Phys. Rev. D 83, 114502 (2011)

Fundamental constituents and colorless bound states of G2-QCD compared to QCD

	G ₂	<i>SU</i> (3)	
quark	(7)	(3)	fermion
antiquark	(7)	(3)	fermion
gluon	(14)	(8)	boson
meson	$(7)\otimes(7)$	$(3)\otimes (\overline{3})$	boson
(bosonic) baryon	$(7)\otimes(7)$	-	boson
(fermionic) baryon	$(7)\otimes(7)\otimes(7)$	$(3)\otimes(3)\otimes(3)$	fermion
glueballs	$(14)\otimes(14)$	$(8)\otimes(8)$	boson
	$(14)\otimes(14)\otimes(14)$	$(8)\otimes(8)\otimes(8)$	boson
hybrid	$(7)\otimes(14)\otimes(14)\otimes(14)$	-	fermion

- With respect to the color representation there is no difference between quarks and antiquarks
- Additional bound states of quarks and gluons (hybrids) exist
- The most important difference is the existence of diquarks in G_2 -QCD

G_2 -QCD in the continuum

Lagrange density for N_f (Dirac) flavour G_2 -QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\Psi} \left(\mathrm{i} \not D - m + \mathrm{i} \gamma_0 \mu \right) \Psi$$

• Decompose the Dirac spinor $\Psi=\chi+\operatorname{i}\eta$ into Majorana spinors

$$\mathcal{L}_{\text{matter}} = \bar{\Psi} \left(i \not \!\!\!D - m + i \gamma_0 \mu \right) \Psi = \begin{pmatrix} \bar{\chi} \\ \bar{\eta} \end{pmatrix} \begin{pmatrix} i \not \!\!\!D - m & i \gamma_0 \mu \\ -i \gamma_0 \mu & i \not \!\!\!\!D - m \end{pmatrix} \begin{pmatrix} \chi \\ \eta \end{pmatrix}$$

• For vanishing baryon chemical potential $\mu = 0$

$$\mathcal{L}_{matter} = \overline{\lambda} \left(\mathrm{i} \not \!\!\!D - m \right) \lambda,$$

where $\lambda = (\chi, \eta)$ is a 2N_f component Majorana spinor.

• Vector chiral transformation

$$\lambda \mapsto e^{\beta \otimes \mathbb{1}} \lambda \implies SO(2N_{\rm f}), \mathbb{Z}(2)^{2N_{\rm f}}$$

• Axial chiral transformation

$$\lambda \mapsto e^{i \, \alpha \otimes \gamma_5} \lambda \implies SO(2N_{\rm f}), U(1)^{2N_{\rm f}}$$

• Due to the Majorana constraint, left and right-handed transformations are not independent

Chiral symmetry of G₂-QCD

 $U(2N_{\rm f})_{\rm L=R^*} = SU(2N_{\rm f})_{\rm L=R^*} \otimes U(1)_{\rm A}/\mathbb{Z}(2N_{\rm f})$

- For $N_{\rm f} = 1$ we have a nontrivial chiral symmetry
- Chiral symmetry $SU(2)_{L=R^*}\otimes \mathbb{Z}(2) \longrightarrow U(1)_B\otimes \mathbb{Z}(2)$
- 2 (would-be) Goldstone bosons (pions)

$$\begin{aligned} \pi_{+} &= \pi_{-} = \pi_{\pm} = \bar{\chi}\gamma_{5}\eta = \bar{\Psi}^{\mathsf{C}}\gamma_{5}\Psi - \bar{\Psi}\gamma_{5}\Psi^{\mathsf{C}} \\ \pi_{0} &= \frac{1}{\sqrt{2}}\left(\bar{\chi}\gamma_{5}\chi - \bar{\eta}\gamma_{5}\eta\right) = \bar{\Psi}^{\mathsf{C}}\gamma_{5}\Psi + \bar{\Psi}\gamma_{5}\Psi^{\mathsf{C}} \end{aligned}$$

• Pions carry baryon charge $n_{\rm B}=2$, i.e. they couple to baryon chemical potential

In contrast to QCD . . .

 \ldots the Goldstone bosons of chiral symmetry breaking are scalar baryons instead of pseudoscalar mesons

Unitary op. $T, T^{\dagger} = T^{-1}$ and Dirac-Op. $D[A, m, \mu], \mu \in \mathbb{R}$

$$D^* T = T D \implies \det D \in \mathbb{R}$$

If additionally $T^*T = -1$, then det $D \ge 0$

$$D[A, m, \mu] = \gamma^{\mu} (\partial_{\mu} - gA_{\mu}) - m + \gamma_{0}\mu$$

$$T = F \otimes \Gamma \implies FA_{\mu}F^{\dagger} = A_{\mu}^{*}$$
 and $\Gamma\gamma_{\mu}\Gamma^{\dagger} = \gamma_{\mu}^{*}$

 A_{μ} and γ_{μ} have to be unitary equivalent to real representations.

Euclidean representation for γ -Matrices: $\Gamma = C\gamma_5$ and $\Gamma^*\Gamma = -\mathbb{1}$ For G_2 every representation is real: $F = \mathbb{1} \implies T^*T = -\mathbb{1}$ $\det D[A, m, \mu] \ge 0$

 $\implies \mathcal{U} = S \cdot \mathcal{V}$ with $S \in G_2/SU(3)$ and $\mathcal{V} \in SU(3)$

With a massive scalar field \$\phi\$ in the (7) representation \$G_2\$ (SO(7)) can be broken down to its \$SU(3)\$ subgroup \$(m ~ \langle \phi^2 \rangle \rightarrow \infty)\$

$$\mathcal{L} = \begin{pmatrix} \bar{\Psi}_3 \\ \bar{\Psi}_{\bar{3}} \\ \bar{\Psi}_1 \end{pmatrix} \begin{pmatrix} i \, \vec{D}_3 - m + i \, \gamma_0 \, \mu & 0 & 0 \\ 0 & i \, \vec{D}_{\bar{3}} - m + i \, \gamma_0 \, \mu & 0 \\ 0 & 0 & i \, \vec{D}_1 - m + i \, \gamma_0 \, \mu \end{pmatrix} \begin{pmatrix} \Psi_3 \\ \Psi_{\bar{3}} \\ \Psi_1 \end{pmatrix}$$

$$\implies \mathcal{U} = S \cdot \mathcal{V}$$
 with $S \in G_2/SU(3)$ and $\mathcal{V} \in SU(3)$

• With a massive scalar field ϕ in the (7) representation G_2 (SO(7)) can be broken down to its SU(3) subgroup ($m \sim \langle \phi^2 \rangle \to \infty$)

 $(7) \longrightarrow (3) \oplus (\overline{3}) \oplus (1)$

$$\mathcal{L} = \begin{pmatrix} \bar{\Psi}_3 \\ \bar{\Psi}_{\bar{3}} \\ \bar{\Psi}_1 \end{pmatrix} \begin{pmatrix} \mathrm{i} \, \vec{D}_3 - m + \mathrm{i} \, \gamma_0 \, \mu & 0 & 0 \\ 0 & \mathrm{i} \, \vec{D}_{\bar{3}} - m + \mathrm{i} \, \gamma_0 \, \mu & 0 \\ 0 & 0 & \mathrm{i} \, \vec{D}_1 - m + \mathrm{i} \, \gamma_0 \, \mu \end{pmatrix} \begin{pmatrix} \Psi_3 \\ \Psi_{\bar{3}} \\ \Psi_1 \end{pmatrix}$$

$$\implies \mathcal{U} = S \cdot \mathcal{V}$$
 with $S \in G_2/SU(3)$ and $\mathcal{V} \in SU(3)$

• With a massive scalar field ϕ in the (7) representation G_2 (SO(7)) can be broken down to its SU(3) subgroup ($m \sim \langle \phi^2 \rangle \to \infty$)

 $(7) \longrightarrow (3) \oplus (\overline{3}) \oplus (1)$

$$\mathcal{L} = \begin{pmatrix} \bar{\Psi}_{3} \\ \bar{\Psi}_{\bar{3}} \\ \bar{\Psi}_{1} \end{pmatrix} \begin{pmatrix} i \not D_{3} - m + i \gamma_{0} \mu & 0 & 0 \\ 0 & i \not D_{\bar{3}} - m + i \gamma_{0} \mu & 0 \\ 0 & 0 & i \not D_{1} - m + i \gamma_{0} \mu \end{pmatrix} \begin{pmatrix} \Psi_{3} \\ \Psi_{\bar{3}} \\ \Psi_{1} \end{pmatrix}$$

$$\implies \mathcal{U} = S \cdot \mathcal{V}$$
 with $S \in G_2/SU(3)$ and $\mathcal{V} \in SU(3)$

• With a massive scalar field ϕ in the (7) representation G_2 (SO(7)) can be broken down to its SU(3) subgroup ($m \sim \langle \phi^2 \rangle \to \infty$)

 $(7) \longrightarrow (3) \oplus (\overline{3}) \oplus (1)$

$$\mathcal{L} = \begin{pmatrix} \bar{\Psi}_{3} \\ \bar{\Psi}_{\bar{3}} \\ \bar{\Psi}_{1} \end{pmatrix} \begin{pmatrix} i \not D_{3} - m + i \gamma_{0} \mu & 0 & 0 \\ 0 & i \not D_{\bar{3}} - m + i \gamma_{0} \mu & 0 \\ 0 & 0 & i \not D_{1} - m + i \gamma_{0} \mu \end{pmatrix} \begin{pmatrix} \Psi_{3} \\ \Psi_{\bar{3}} \\ \Psi_{1} \end{pmatrix}$$

Lattice results

- $\bullet\,$ Lattice simulations with Wilson fermions and $\mathit{N}_{\rm f}=1$ Dirac flavour
- $\bullet\,$ Symanzik improved gauge action with inverse gauge coupling $\beta\sim g^{-2}$
- Different lattices from $V=8^3 imes 2$ up to $V=16^4$ and different values of κ

Observables considered here are ...

- ... the Polyakov loop $P(T, \mu, m)$
- ... the chiral condensate $\Sigma(T, \mu, m) = \frac{1}{V} \frac{\partial \ln Z}{\partial m}$
- ... the quark number density $n_q(T, \mu, m) = \frac{1}{V} \frac{\partial \ln Z}{\partial \mu}$
- . . . its susceptibilities $\chi(\mathcal{O})$
- ... and the pion correlation function (pion mass)

$$C_{\pi}(x,y) = \left\langle \pi_{0}(x) \, \pi_{0}^{\dagger}(y) \right\rangle = \left\langle \pi_{\pm}(x) \, \pi_{\pm}^{\dagger}(y) \right\rangle = \left\langle \bar{\chi}(x) \gamma_{5} \, \chi(x) \, \bar{\chi}(y) \gamma_{5} \, \chi(y) \right\rangle$$

Lattice results - Setting the scale

Volume $V = 8^3 \times 16$

 $\mu = 0.0$

Zero temperature

Quark number density $n_q = \frac{1}{V} \frac{\partial \ln Z}{\partial \mu}$

Volume $V = 8^3 \times 16$

 $\kappa = 0.147$

 $ilde{a}=m_{\pi},\, ilde{\mu}=\mu/m_{\pi},\,\, ilde{T}=T/m_{\pi}$

Polyakov loop P

Volume $V = 8^3 \times 16$

 $\kappa = 0.147$

 $ilde{\mathsf{a}}=m_{\pi},\, ilde{\mu}=\mu/m_{\pi},\, ilde{\mathsf{T}}=\mathsf{T}/m_{\pi}$

Chiral condensate $\Sigma = \frac{1}{V} \frac{\partial \ln Z}{\partial m}$

Volume $V = 8^3 \times 16$

 $\kappa = 0.147$

 $ilde{a}=m_\pi,\, ilde{\mu}=\mu/m_\pi,\, ilde{T}=T/m_\pi$

Zero temperature - Silver blaze property

Quark number density $n_q = \frac{1}{V} \frac{\partial \ln Z}{\partial u}$

Volume $V = 8^3 \times 16$

 $ilde{a}=m_{\pi},\, ilde{\mu}=\mu/m_{\pi},\,\, ilde{T}=T/m_{\pi}$

ullet Onset transition to (bosonic) baryonic matter at $\mu_0 \approx m_\pi/2$

- Silver blaze property known from QCD
- Diquarks condensate for $\mu > \mu_0$

Volume $V = 8^3 \times 16$

• Physical units set by $T_{\rm c}(\mu=0)=160\,{
m MeV} \implies m_\pi pprox 1024\,{
m MeV}$

24

33

Finite temperature

Volume $V = 8^3 \times 2$

 $\kappa = 0.147$

 $ilde{a}=m_{\pi}$, $ilde{\mu}=\mu/m_{\pi}$, $ilde{T}=T/m_{\pi}$

Finite temperature

Polyakov loop P

Volume $V = 8^3 \times 2$

 $ilde{a}=m_{\pi}$, $ilde{\mu}=\mu/m_{\pi}$, $ilde{T}=T/m_{\pi}$

Chiral condensate
$$\Sigma = \frac{1}{V} \frac{\partial \ln Z}{\partial m}$$

Volume $V = 8^3 \times 2$

 $ilde{a}=m_{\pi},~ ilde{\mu}=\mu/m_{\pi},~ ilde{T}=T/m_{\pi}$

Quark number density

Polyakov loop

Volume $V = 8^3 \times 4$ and $V = 8^3 \times 16$ $\kappa = 0.147$ $\tilde{a} = m_{\pi}$, $\tilde{\mu} = \mu/m_{\pi}$, $\tilde{T} = T/m_{\pi}$

Chiral condensate

Plaquette density

Volume $V = 8^3 \times 4$ and $V = 8^3 \times 16$ $\kappa = 0.147$ $\tilde{a} = m_{\pi}$, $\tilde{\mu} = \mu/m_{\pi}$, $\tilde{T} = T/m_{\pi}$

• Physical units set by $T_{
m c}(\mu=0)=160\,{
m MeV} \implies m_{\pi}pprox$ 785 MeV

• Qualitatively the same results as on the smaller lattices

Volume $V = 16^3 \times 6, \ 16^3 \times 8, \ 16^4$ $\kappa = 0.156$ $\tilde{a} = m_{\pi}, \ \tilde{\mu} = \mu/m_{\pi}, \ \tilde{T} = T/m_{\pi}$

Conclusions

The G_2 -QCD phase diagram

- G_2 gauge theories share many important features with SU(3) gauge theories
- There is no sign problem in G_2 -QCD: It is possible to investigate the phase diagram of a theory with fundamental quarks and fermionic baryons even at low temperatures and high densities with lattice simulations
- G₂-QCD possesses the silver blaze property
- Various transitions at zero temperature: diquark condensation, onset of nuclear matter and deconfinement/chiral restoration

Outlook

- Smaller pion masses and larger lattices in order to verify the transitions at zero temperature
- Computation of neutron/proton masses
- Location of chiral and deconfinement transition
- Order of the phase transitions at zero and finite temperature
- 2 flavour G₂-QCD
- . . .

A. Maas, L. von Smekal, B. H. Wellegehausen and A. Wipf, The phase diagram of a gauge theory with fermionic baryons, arXiv:1203.5653 [hep-lat], 2012.