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Fisher’s zeros and Finite Size Scaling
Lattice models considered:
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3 SU(3) 4D Nf = 4 and 12

Effect of boundary conditions (in O(2) sigma model)
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Fisher’s zeros and Finite Size Scaling

Decomposition of the partition function (Niemeijer and van Leeuwen
76)

Z = Zsing.e
Gbounded

Zsing. = e−LD fsing.

RG transformation: the lattice spacing a increases by a scale factor b

a → ba

L → L/b

fsing. → bDfsing.

Zsing. → Zsing.

Important Conclusion (Itzykson et al. 83)
The zeros of the partition functions are RG invariant

Fisher’s zeros: zeros of the partition function in the complex β plane
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Zsing. in terms of scaling variables

We consider discrete RG transformations

Example

b = 2, for a sigma model on D-dimensional cubic lattice: 2D fields are
replaced by one blocked field

Lattice size (in a units)
L → L/b

Scaling variables (e. g. u = β − βc + . . . ):

ui → λiui

Relevant variables: λi = b1/νi ; Irrelevant variables: λj = b−ωj

RG invariance of Zsing.

Zsing. = Q({uiL
1/νi}, {ujL

−ωj})
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Zeros for one relevant variable

For a single relevant variable u ≃ β − βc , we have Zsing = Q(uL1/ν).

The complex equation Z = 0 can be written as two real equations for
two real variables and generic solutions are isolated points.

Z = 0 ⇒ uL1/ν = wr with r = 1,2, . . .

This implies the approximate form for the zeros:

βr (L) ≃ βc + wr L−1/ν

There are many examples, where these discrete solutions follow
approximate lines or lay inside cusps. In the infinite volume limit, the
set of zeros may (or may not) separate the complex plane into two or
more regions.
For a first order transition: ν → 1/D.
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Example: 4D U(1) (with Bazavov, Berg and Du)

The complex zeros appear at the intersections of ReZ=0 and ImZ=0.
Results obtained by integrating a reweighted density of states
calculated with multicanonical methods (arxiv 1202.2109, PRD 85)
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Figure: Zeros of the Re (+, blue) and Im (x, red) part of Z for U(1) using the
density of states for 44 and 64 lattices.
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In some cases the zeros pinch the real axis
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In some other cases, they leave a gap along the real
axis
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Possible complex RG flows (artistic rendering)
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“Confining" flows: 2D O(N) models in the large-N limit

RG flows go directly from weak coupling to strong coupling (mass gap).
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Figure: Infinite L RG flows (arrows). The blending blue crosses are the β
images of two lines of points located very close above and below the [−8, 0]
cut of β(M2) in the M2 plane. Fisher’s zeros stay outside of the blue lines
(PRD 80 054020).
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4D U(1): first or second order?

U(1) on L4: the average plaquette distribution has a double peak
distribution with equal heights at a pseudo-critical βS . For small L, the
distance between the peaks slowly decreases with the volume. (PRD
85 with Bazavov, Berg and Daping Du).
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Figure: Average plaquette distribution for U(1) at βS for L= 4, 6 and 8.
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4D U(1): first or second order?

In the infinite volume limit, the width of the double peak distribution of
the average plaquette goes to a nonzero limit (latent heat) for a first
order phase transition and to zero as an inverse power of L for a
second order transition. Better statistics for the large volumes are
necessary to discriminate between the two scenarios.
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Double peak does not always mean first order

A simple example (the average plaquette is denoted S/LD)

Z (β) =

∫

dSn(S)e−βS

n(S)e−βSS ∝ (e−(1/2σ2)(S−S1)
2
+ e−(1/2σ2)(S−S2)

2)

With n(S) the density of state and βS such that the two peaks have
equal height. The zeros are located at βr = βS + i2π(2r +1)/(S2 −S1).

If (S2 − S1) ∝ LD, we have a first order phase transition (latent heat)
and Imβ1 ∝ L−D.

However, if (S2 − S1) ∝ LD−ζ , then the width of the double peak in the
average plaquette goes to zero at infinite volume and Imβ1 ∝ L−1/ν

with ν = 1/(D − ζ).
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Fits of Imβ1(L) (L−4 : first order, L−1/ν: second order)

Fits of y = Imaginary part of lowest zero. First order hypothesis:

y =
a1

L4

(

1 +
a2

L
+

a3

L2

)

, Q = 0.43; (all7L) . (1)

Using only the data from the L = 4, 6, 8 lattices, the 2-parameter fit

y = a1 La2 Q = 0.39

gives the exponent a2 = −3.082 (35) instead of −4. However, the fit

y =
a1

L3.08

(

1 +
a2

L
+

a3

L2

)

,

with the seven data points leads to Q < 10−8. A four parameter fit as
in Eq. (1) but with the leading exponent fitted, gives 4.121(74) for this
exponent with Q=0.72. These results seem to favor the first order
possibility. However, they should be checked with higher statistics data
for the larger volumes.
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Fits of Imβ1(L) (L−4 : first order, L−1/ν: second order)
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Figure: Fits of Imβ1(L) on a log-log scale.
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3D U(1): no zeros near the real axis (with Alan
DenBleyker)

3D U(1) is confining. There is a gap in the spectrum and the zeros.
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Figure: Fisher’s zeros for U(1) on L3 lattices (L=4, 6 and 8 from left to right)
The zeros of the real (imaginary) part are represented by the blue (red)
curves and the region of confidence is below the green line (zeros near or
above this line are not reliable).
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SU(2) with βAdjoint (with A. Denbleyker and Daping Du)
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Figure: Lowest zeros for βAdjoint = 0.5, 0.6, ..., 1.5. The robustness of these
results are discussed in Daping’s Du thesis.
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SU(2) with βAdjoint , β3/2, . . . (with Judah
Unmuth-Yockey)

In the Migdal-Kadanoff approximation, RG flows can go around phase
boundaries (not shown).
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2-lattice matching using Migdal-Kadanoff (with Alan
Denbleyker and Judah Unmuth)

Is the MK approximation reliable? The 2Rx2R Wilson loops for a (2L)4

lattice and the RxR Wilson loop on a LD lattice with effective couplings
obtained by the MK recursion (see Bitar et al. 83 and Toussaint et al.
82). The matching is not very accurate (Does Cheng Tomboulis
arxiv1206.3616, Friday talk, improvement help?)

Volume b βF βA β3/2 β2 Psize 〈P〉 σ

84 2.40000 0.00000 2x2 0.7766 0.00672
44 2 0.955274 -0.0496152 0.003759328 -0.000310275 1x1 0.7710 0.01226
84 2.40000 0.00000 4x4 0.9009 0.09007
44 2 0.955274 -0.0496152 0.003759328 -0.000310275 2x2 0.9973 0.01283
84 4.80000 0.00000 2x2 0.4016 0.00369
44 2 4.47578 -0.728286 0.188086 0.055336 1x1 0.2225 0.00655
84 4.80000 0.00000 4x4 0.5670 0.12841
44 2 4.47578 -0.728286 0.188086 0.055336 2x2 0.5144 0.01799
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SU(3) with Nf = 4 and 12 (Yuzhi Liu and Don Sinclair)

We use standard Wilson gauge and naive staggered fermion
action with Hybrid Monte Carlo(HMC) algorithm.

Focus on Nf = 4 and Nf = 12 with relatively small symmetric
lattices.

Bare quark mass is set to be mq = 0.02 for now.

Configurations used to calculate Fisher’s zeros:

Nf Volume Num. of β used Num. of config. per β
4 44 21 25,000
4 64 35 8,000
4 84 36 25,000
4 124 21 25,000
4 164 5 2,500

12 44 31 50,000
12 64 41 50,000
12 84 15 8,000
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SU(3) with Nf = 4 and 12 (with Yuzhi Liu and Don
Sinclair)
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SU(3) with Nf = 4 and 12 (with Yuzhi Liu and Don
Sinclair)
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SU(3) with Nf = 4 and 12 (with Yuzhi Liu and Don
Sinclair)
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SU(3) with Nf = 4 and 12 (with Yuzhi Liu and Don
Sinclair)
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1D O(2) with L = 4, 8, 16, 32 (with Haiyuan Zou)

The zeros are very different for open (o.b.c) and periodic boundary
conditions (p.b.c):
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Figure: Zeros of partition function (p.b.c) with different volumes and zeros of
partition function (o.b.c)
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MK complex flows (Haiyuan Zou)
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Figure: MK complex flows for the system (o.b.c) and zeros from the two
different boundary conditions
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Effect of boundary conditions in 1D O(2) (with
Haiyuan Zou)

At finite volume, the nonperturbative parts of the average energy are
very different for open and periodic boundary conditions

|(E − EPT )/E | ∝ e−2β(open b.c.)

∝ e−βEv (periodic b.c.)

where Ev is the energy of the periodic solution of the classical
equation of motion with winding number 1.
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Effect of boundary conditions in 1D O(2) (with
Haiyuan Zou)
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Figure: o.b.c(Left): Errors of the average energy series with order 2,4,...,20;
p.b.c(L = 36)(Right): Errors of the average energy series with order 2,4,...,12.
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Comparison of Hadamard series (with Haiyuan Zou)
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Conclusions

Much progress has been been made in finding reliable ways to
locate the zeros of various models

A consistent picture of confinement in terms of complex RG flow is
emerging

Much work remains to be done for multiflavor LGT

Better analytical approaches (based on improved RG or weak
coupling expansions) are needed

FSS of zeros is simple, however subleading corrections are
important (at least for unimproved actions)

Plans: monitor the effects of improvement on the zeros by turning
on improvement adiabatically

Thanks!
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(Modified) Hadamard expansions

Hadamard expansion can make the asymptotic series converge. And
the modified Hadamard expansion makes the series converge faster.
(R.B.Paris, Proc.R.Soc.Lond.A (2001))
The Usual Asymptotic Expansions:

e−x I0(x) =
1√
2πx

∞
∑

k=0

ak

(2x)k (2)

Hadamard Expansions:

e−x I0(x) =
1√
2πx

∞
∑

k=0

ak

(2x)k P(k +
1
2
,2x) (3)

The Modified Hadamard Expansions:

e−x I0(x) =
1√
2πx

{
M−1
∑

k=0

ak

(2x)k P(k +
1
2
,2x) + TM,n(x)} (4)
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