MONTE CARLO STUDY ON THE BIRTH OF OUR UNIVERSE BY A LORENTZIAN MATRIX MODEL FOR SUPERSTRING THEORY

SANG-WOO KIM (OSAKA UNIVERSITY)
LATTICE 2012 @ CAIRNS

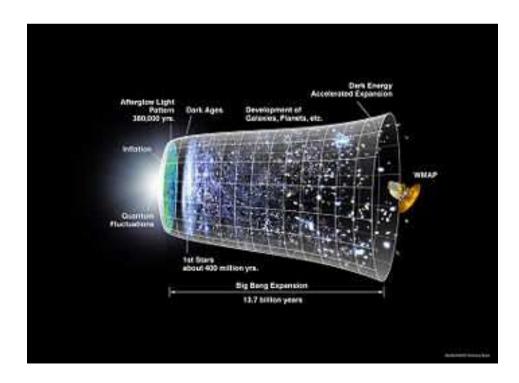
BASED ON 1108. 1540 (PRL 108 (2012) 011601)
BY SWK, JUN NISHIMURA, ASATO TSUCHIYA

Motivation

> Cosmology is another frontier for high energy particle physics.

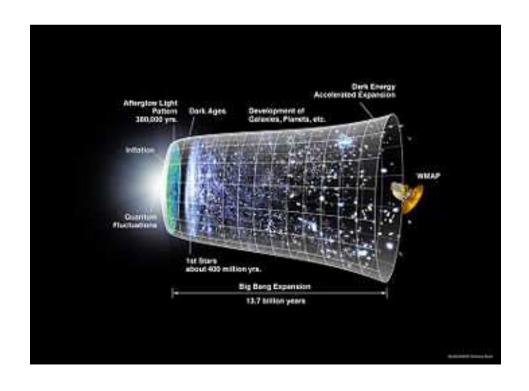
Motivation

- > Cosmology is another frontier for high energy particle physics.
- > Many interesting questions in the early universe :



Motivation

- > Cosmology is another frontier for high energy particle physics.
- Many interesting questions in the early universe :



Initial singularity problem

Spacetime dimensionality

Inflation, effective model

CMB spectrum

Dark energy, etc

Many works so far:
 Quantum cosmology based on Wheeler-DeWitt eq,
 Vilenkin ('82), Hartle, Hawking ('83), ...
 String gas cosmology,
 Brandenberger, Vafa ('89), ...

D-brane + Perturbative analysis, etc.

Herdeiro, Hirano, Kallosh ('01), ...

```
Many works so far :
   Quantum cosmology based on Wheeler-DeWitt eq,
       Vilenkin ('82), Hartle, Hawking ('83), ...
   String gas cosmology,
       Brandenberger, Vafa ('89), ...
   D-brane + Perturbative analysis, etc.
       Herdeiro, Hirano, Kallosh ('01), ...
Today's talk features :
  Based on a matrix model proposal in string theory.
  Unique time history is revealed by Monte Carlo method.
  Expanding 3d spaces emerge in real time.
```

Local property for late time is suggested.

Matrix Model

Our starting point is 0d Matrix Model.

Ishibashi, Kawai, Kitazawa, Tsuchiya ('96)

A nonperturbative formulation proposed for superstring theory, as lattice QCD is for QCD.

Obtained from Green-Schwarz action in string theory.

N=2 SUSY on matrix eigenvalues.

Matrix Model

> Our starting point is 0d Matrix Model.

Ishibashi, Kawai, Kitazawa, Tsuchiya ('96)

A nonperturbative formulation proposed for superstring theory, as lattice QCD is for QCD.

Obtained from Green-Schwarz action in string theory.

N=2 SUSY on matrix eigenvalues.

- For the cf. 1d Matrix Quantum Mechanics, 2d Matrix String Theory

 Banks, Fischler, Shenker, Susskind ('96) Dijkraaf, Verlinde, Verlinde ('97)
- Euclidean IKKT by K. Anagnostopoulos at yesterday's parallel.
- More general review by M. Hanada at tomorrow's plenary.

$$S = -\frac{1}{4g^2} \mathrm{tr}[A_\mu, A_\nu]^2 - \frac{1}{2g^2} \mathrm{tr}(\bar{\Psi} \Gamma^\mu [A_\mu, \Psi])$$

$$A_\mu \ , \ \Psi_\alpha \ : \ N \times N \ \text{Hermitian matrices}$$

$$A_{\mu}\;,\;\Psi_{lpha}\;\;:\;\;N imes N$$
 Hermitian matrices

- Let's avoid Wick rotation to study real time evolution.
- Pfaffian is real.

$$S = -\frac{1}{4g^2} \text{tr}[A_{\mu}, A_{\nu}]^2 - \frac{1}{2g^2} \text{tr}(\bar{\Psi} \Gamma^{\mu}[A_{\mu}, \Psi])$$

$$A_{\mu}$$
 , Ψ_{lpha} : $N imes N$ Hermitian matrices

- Let's avoid Wick rotation to study real time evolution.
- Pfaffian is real.
- Noncompact temporal direction requires a IR cutoff.

$$\frac{1}{N}\operatorname{tr}(A_0)^2 \le \kappa \frac{1}{N}\operatorname{tr}(A_i)^2$$

 \triangleright This breaks SUSY and SO(9,1) symmetry.

- > We can regularize oscillating phase by
 - a) introduce damping term, $\lim_{\epsilon o 0} \int dA \, \mathsf{Pf}(\mathcal{M}) \, e^{iS_b \epsilon |S_b|}$

- We can regularize oscillating phase by
 - a) introduce damping term, $\lim_{\epsilon o 0} \int dA \, \mathsf{Pf}(\mathcal{M}) \, e^{iS_b \epsilon |S_b|}$
 - b) insert identity, $\int_0^\infty dr \, \delta \left(\frac{1}{N} {\rm tr} A_i^2 r \right)$

- We can regularize oscillating phase by
 - a) introduce damping term, $\lim_{\epsilon o 0} \int dA \, \mathsf{Pf}(\mathcal{M}) \, e^{iS_b \epsilon |S_b|}$
 - b) insert identity, $\int_0^\infty dr \, \delta \left(\frac{1}{N} {\rm tr} A_i^2 r \right)$
 - c) and integrate out scale with $A_{\mu}
 ightarrow \sqrt{r} A_{\mu}$

$$\int dA \, \delta(...) \, \mathsf{Pf}(\mathcal{M}(A)) \int dr \, r^{18(N^2-1)/2-1} \, e^{-r^2(\epsilon|S_b|-iS_b)}$$

$$\propto |S_b|^{-18(N^2-1)/4}$$

- We can regularize oscillating phase by
 - a) introduce damping term, $\lim_{\epsilon \to 0} \int dA \, {\sf Pf}(\mathcal{M}) \, e^{iS_b \epsilon |S_b|}$
 - b) insert identity, $\int_{0}^{\infty} dr \, \delta \left(\frac{1}{N} \text{tr} A_{i}^{2} r \right)$
 - c) and integrate out scale with $A_{\mu}
 ightarrow \sqrt{r} A_{\mu}$

$$\int dA \, \delta(...) \, \mathsf{Pf}(\mathcal{M}(A)) \int dr \, r^{18(N^2-1)/2-1} \, e^{-r^2(\epsilon|S_b|-iS_b)}$$

$$\propto |S_b|^{-18(N^2-1)/4}$$

d) Need to introduce L: $\int_0^{L^2} dr \, \delta(...)$

$$\int_0^{L^2} dr \, \delta(...)$$

$$\frac{1}{N}\mathsf{tr}(A_i)^2 \le L^2$$

We study following model by Monte Carlo method:

$$Z = \int d\tilde{A} \operatorname{Pf}(\mathcal{M}) \, \delta\left(\frac{1}{N} \mathrm{tr} F_{\mu\nu}^2\right)$$

$$\begin{cases} d\tilde{A} = dA \ \delta\left(\frac{1}{N}\mathrm{tr}(A_i)^2 - 1\right) \ \theta\left(\kappa - \frac{1}{N}\mathrm{tr}(A_0)^2\right) \\ \int_0^{L^2} dr \, r^{18(N^2 - 1)/2 - 1} \, e^{-r^2(\epsilon|x| - ix)} \ \propto \ \delta(x) \ \text{in the large } N, \ L. \end{cases}$$

We study following model by Monte Carlo method:

$$Z = \int d\tilde{A} \operatorname{Pf}(\mathcal{M}) \, \delta\left(\frac{1}{N} \mathrm{tr} F_{\mu\nu}^2\right)$$

Note that

Lorentzian

$$trF^2 = 0 \rightarrow 2trF_{0i}^2 = trF_{ij}^2$$

noncommutative: Lie algebraic, ...

Euclidean

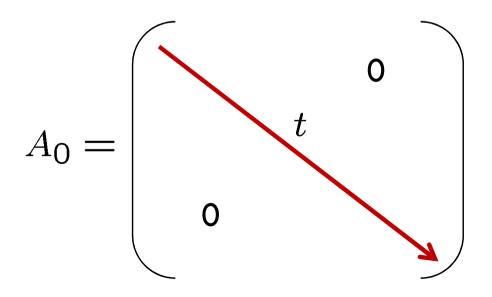
$$trF^2 = 0 \rightarrow 2trF_{0i}^2 = trF_{ij}^2 = 0$$

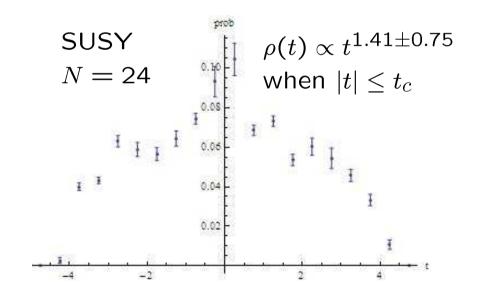
commutative

Results: Time Eigenvalues

 \Box Let $t_1 \leq t_2 \leq ... \; t_N$ be eigenvalues of A_0 .

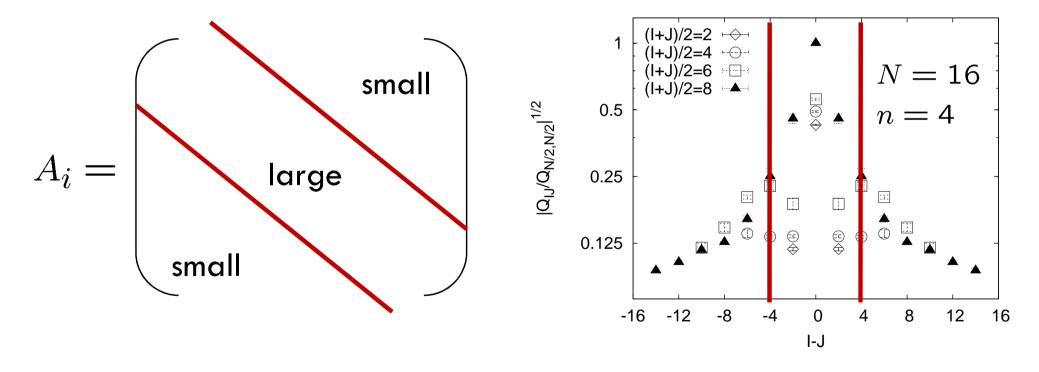
Thanks to SUSY, they are smoothly extended as temporal cutoff increases.





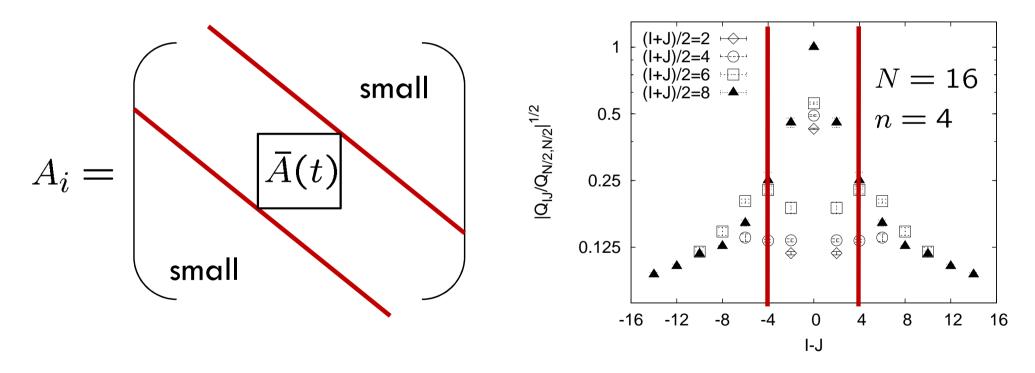
Results: Band Diagonal Structure

Band diagonal structure appears dynamically for A_i in A_0 's diagonal basis.



Results: Band Diagonal Structure

 $lue{}$ Band diagonal structure appears dynamically for A_i in A_0 's diagonal basis.



 $n \times n$ subblock matrix represents space structure at given time.

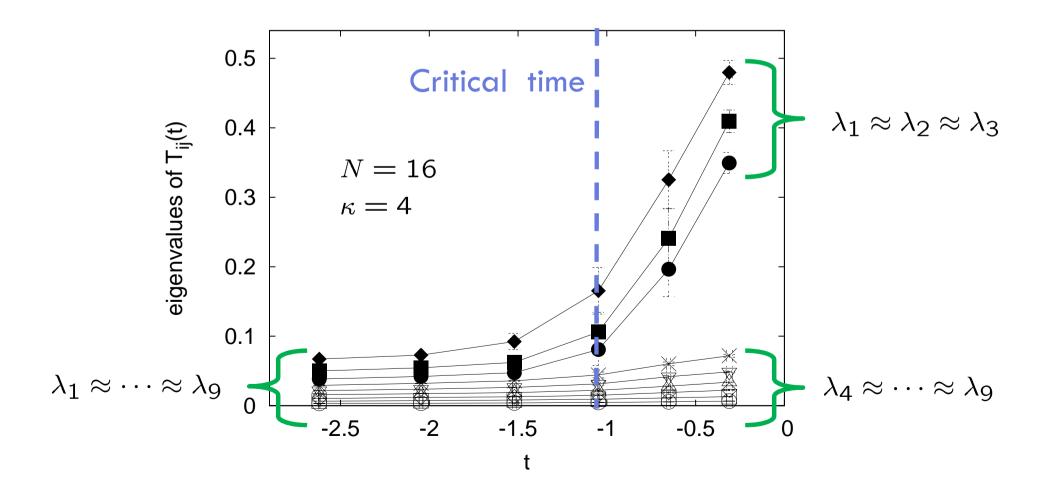
$$[\bar{A}_i(t)]_{ab} = \langle t_{\nu+a} | A_i | t_{\nu+b} \rangle$$
 , $t = \frac{1}{n} \sum_{k=1}^n t_{\nu+k}$
 $(\nu = 1, ..., N-n, a, b = 1, ..., n)$

Results: SSB of SO(9) symmetry

order parameter: $T_{ij}(t) = \frac{1}{n} \operatorname{tr}(\bar{A}_i(t) \bar{A}_j(t))$ 9x9 real sym.

Results: SSB of SO(9) symmetry

order parameter: $T_{ij}(t) = \frac{1}{n} \operatorname{tr}(\bar{A}_i(t) \bar{A}_j(t))$ 9x9 real sym.



Mechanism of SSB

□ Large kappa for fixed N is described by

$$L = -\frac{1}{4N}\operatorname{tr}(F_{ij})^2 + \frac{\lambda}{2}\left(\frac{1}{N}\operatorname{tr}(A_i)^2 - 1\right)$$

 \square EOM is $[A_j, [A_j, A_i]] = \lambda A_i$

Mechanism of SSB

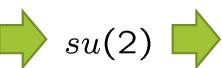
Large kappa for fixed N is described by

$$L = -\frac{1}{4N} \text{tr}(F_{ij})^2 + \frac{\lambda}{2} \left(\frac{1}{N} \text{tr}(A_i)^2 - 1 \right)$$

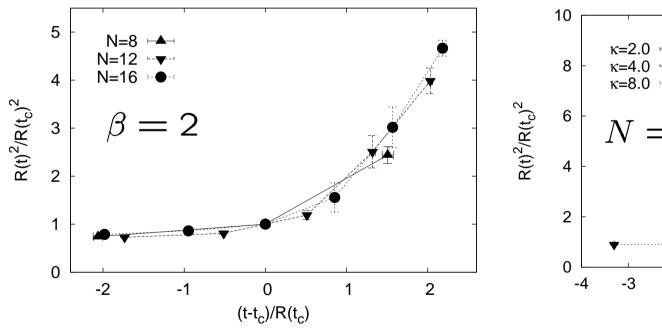
- \square EOM is $[A_i, [A_i, A_i]] = \lambda A_i$
- Let's try an Ansatz

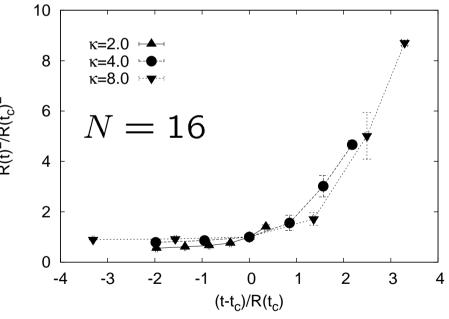
$$A_i=\chi L_i$$
 for $i=1,...,d$
$$A_i=0$$
 for $i=d+1,...9$
$$[L_i,L_j]=if_{ijk}L_k$$
 compact, semisimple

$$\begin{cases} \frac{\chi^2}{N} \operatorname{tr}(L_i)^2 = 1 & \to & \chi = \sqrt{\frac{N}{\operatorname{tr}(L_i)^2}} \\ \operatorname{tr}F_{ij}^2 = \chi^4 \operatorname{tr}(f_{ijk}L_k)^2 \propto \frac{1}{\operatorname{tr}(L_i)^2} \leq \frac{2}{3} \end{cases} \qquad \Rightarrow su(2) \Rightarrow 3d$$



Continuum / Infinite volume limit

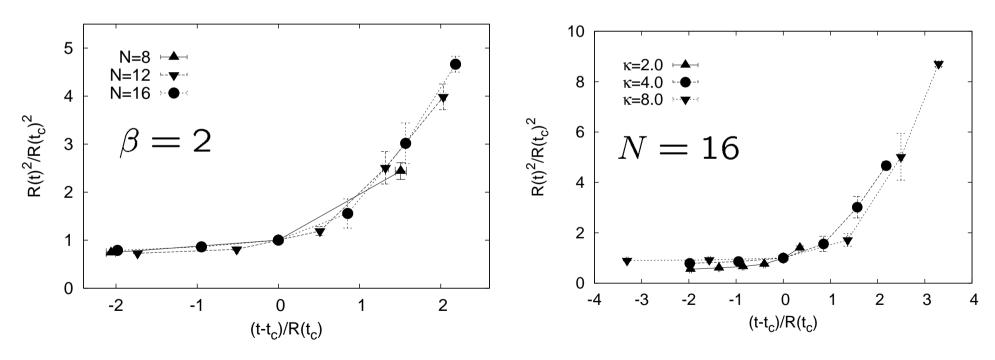




Continuum / Infinite volume limit

$$N
ightarrow \infty$$
 with $\kappa = eta N^p$, $p \sim 1/4$

$$L, \ eta o \infty$$



They seem to converge to a single curve.

VDM model

 \triangleright In A_0 's diagonal basis,

$$Z = \int dt dA_i \, \Delta(t) \, \mathsf{Pf}(\mathcal{M}) \, e^{iS_b}$$

$$\Delta(t) = \prod_{i < j} (t_i - t_j)^2$$

$$Z_{VDM} = \int dt dA_i \, \Delta(t)^d \, e^{iS_b}$$

VDM model

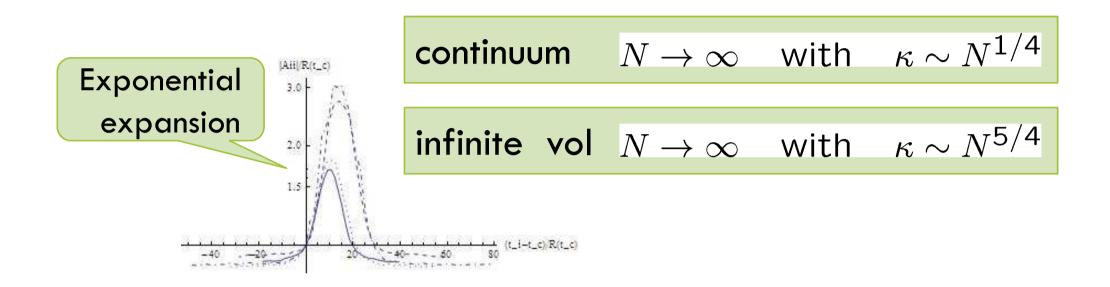
 \triangleright In A_0 's diagonal basis,

$$Z = \int dt dA_i \, \Delta(t) \, \mathsf{Pf}(\mathcal{M}) \, e^{iS_b}$$
 $\Delta(t) = \prod_{i < j} (t_i - t_j)^2$

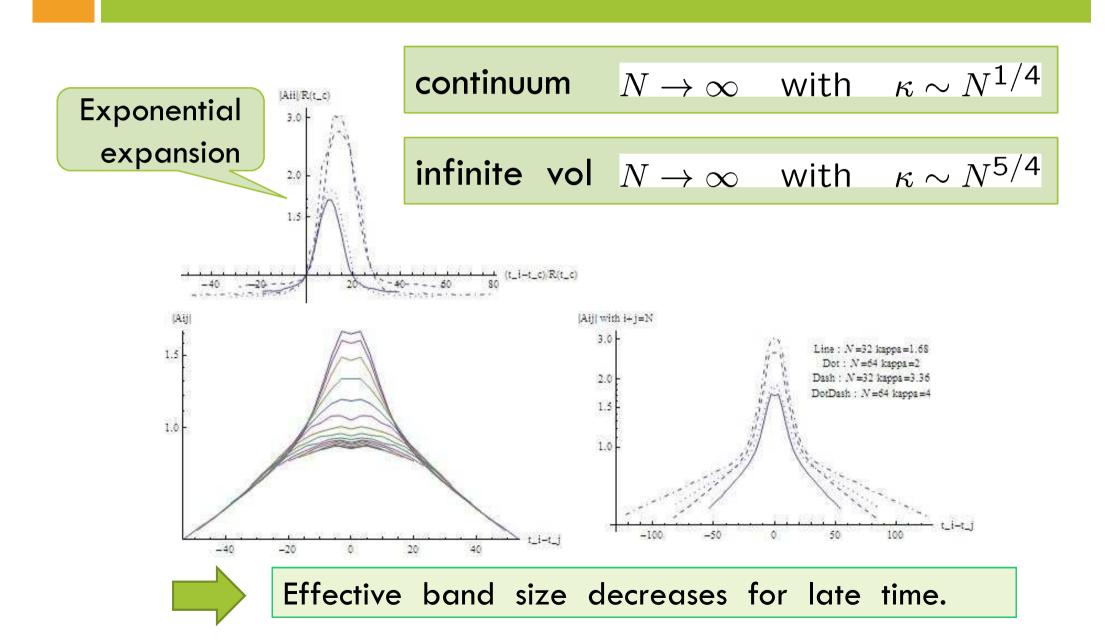
$$Z_{VDM} = \int dt dA_i \, \Delta(t)^d \, e^{iS_b}$$

- Bosonic model with fermionic interactions on temporal eigenvalues.
- Interesting properties such as SSB to 3d, expansion are kept.
- > It is like quenched QCD for QCD. Much faster than full SUSY model.

Preliminary results on VDM model



Preliminary results on VDM model

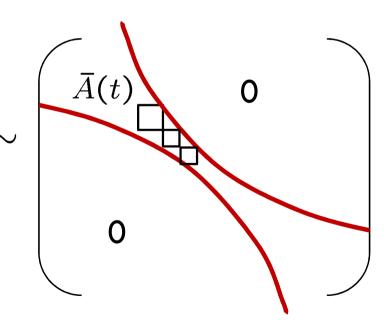


More effective methods

> Let's test whether we can ignore off-diagonal elements with

$$(A_i)_{IJ} = 0$$
 for $|I - J| \ge B$, $\Delta(t) = \prod_{1 \le i - j \le B} (t_i - t_j)^2$

- At very late time, the interaction for different time block is likely to be ignored.
- Physics for $\bar{A}(t)$ is just quantum mechanics, which emerges from Lorentzian matrix model.



This QM will be very effective for studying late time.

Summary

0-d matrix model with SO(9,1)

$$S = -\frac{1}{4g^2} \operatorname{tr}[A_{\mu}, A_{\nu}]^2 + S_f$$

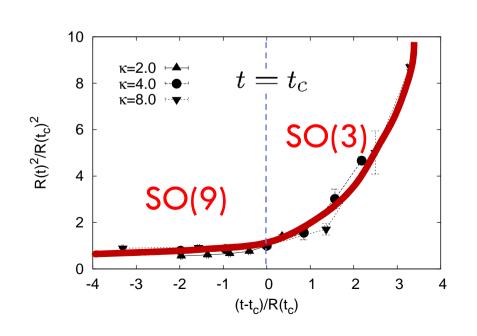
Two IR cutoffs

$$\frac{1}{N} \operatorname{tr} A_0^2 \le \kappa L^2 \ , \quad \frac{1}{N} \operatorname{tr} A_i^2 \le L^2$$

$$N \ , \ \kappa \ , \ L \quad \rightarrow \quad \infty$$

- Unique time history
- □ SSB from 9d to 3d spaces
- Exponential expansion
- □ Noncommutative mechanism
- □ Local property for late time

Early Universe



Backup

Alternative Approach

- The SSB and expansion relies on space-space noncommutativity.
- Does our model allow commutative spacetime in late time?
- Direct numerical study become more difficult for future.
- We look for classical solutions consistent with previous result.

Equation of Motion $\frac{\delta}{\delta A_{\mu}} \left(\frac{1}{2} \operatorname{tr}[A_{\mu}, A_{\nu}]^{2} + \lambda \operatorname{tr}A_{i}^{2} + \tilde{\lambda} \operatorname{tr}A_{0}^{2}\right) = 0$ $-[A_{0}, [A_{0}, A_{i}]] + [A_{j}, [A_{j}, A_{i}]] = \lambda A_{i}$ $-[A_{j}, [A_{j}, A_{0}]] = \tilde{\lambda} A_{0}$

Classical solution 1

$$[A_0 = -i\sqrt{\lambda}\,\frac{d}{dx} \quad, \quad A_i = a\exp(x)]$$

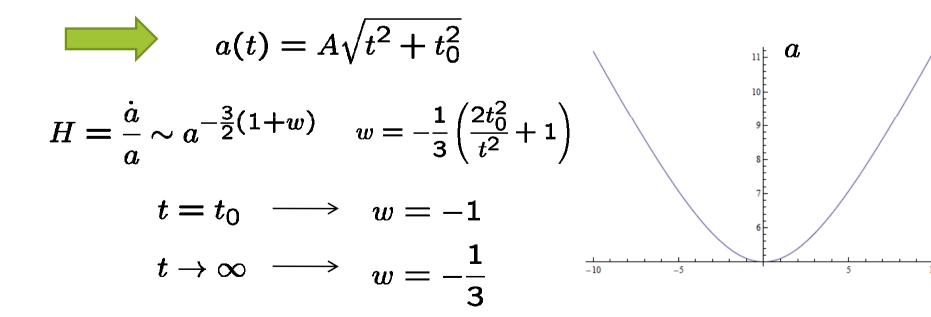
$$[A_0, A_i] = -i\sqrt{\lambda}\,A_i \quad, \quad [A_i, A_j] = 0$$

$$\begin{bmatrix} 1 & N=16 & 0 & & & \\ N=32 & 0 & & & \\ N=128 & \sqrt{2} & N=64 & \Delta \\ N=128 & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} &$$

Classical solution 2

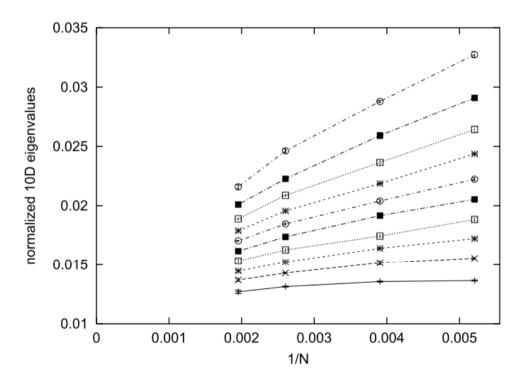
$$A_0 = \sqrt{-\lambda} T_0, \ \ A_1 = c_1 \sqrt{-\tilde{\lambda}} T_1, \ \ A_2 = c_2 \sqrt{-\tilde{\lambda}} T_1, \ \ A_3 = c_3 \sqrt{-\tilde{\lambda}} T_1$$

$$[T_0, T_1] = iT_2$$
 $[T_0, T_2] = -iT_1$ $[T_1, T_2] = -iT_0$



Phase quenched Euclidean model

 Pfaffian is complex in Euclidean signature, which give rise to the sign problem.

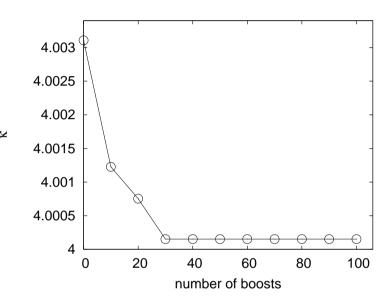


[Ambjorn, Anagnostopoulos, Bietenholz, Hotta, Nishimura 2000]

Without complex phase, there is no SSB.
 (Origin of Euclidean SSB is fermionic)

Lorentz symmetry

The cutoff restricts boost symmetry and we found that the thermalized configurations have minimum $\frac{1}{N} \text{tr}(A_0)^2$ under Lorentz transformation.



Therefore we may equivalently use Lorentz invariant cutoff, which act on configurations in "minimum $rac{1}{N} {
m tr} (A_0)^2$ frame".

$$\frac{1}{N} \operatorname{tr}(\tilde{A}_0)^2 \le \kappa \frac{1}{N} \operatorname{tr}(\tilde{A}_i)^2$$

IIB Matrix Model

$$Z = \int dAd\Psi e^{-S_b - S_f}$$

$$S_b = -\frac{1}{4g^2} \text{tr}[A_\mu, A_\nu]^2$$

$$S_f = -\frac{1}{2g^2} \text{tr}(\bar{\Psi} \Gamma^\mu [A_\mu, \Psi])$$

NxN hermitian matrices (N $\rightarrow \infty$)

 A_{μ} : 10d Lorentz vector

Ψ: 10d Majorana-Weyl spinor

[Ishibashi, Kawai, Kitazawa, Tsuchiya 96]

$$\mathcal{N} = 2 \text{ SUSY } \begin{cases} \delta^{(1)} A_{\mu} = i \overline{\epsilon} \Gamma_{\mu} \Psi \\ \delta^{(1)} \Psi = \frac{i}{2} [A_{\mu}, A_{\nu}] \Gamma^{\mu\nu} \epsilon \end{cases} \begin{cases} \delta^{(2)} A_{\mu} = 0 \\ \delta^{(2)} \Psi = \xi \mathbf{1} \end{cases}$$

Gauge symmetry 10d Lorentz symmetry Bosonic shift symmetry

$$\begin{cases} \delta A_{\mu} = c_{\mu} \mathbf{1} \\ \delta \Psi = 0 \end{cases}$$

Interpretation of Matrix

$$\begin{cases} \tilde{Q}^{(1)} = Q^{(1)} + Q^{(2)} \\ \tilde{Q}^{(2)} = i(Q^{(1)} - Q^{(2)}) \end{cases} \qquad \qquad [\bar{\epsilon}\tilde{Q}^{(i)}, \bar{\xi}\tilde{Q}^{(j)}] = \delta^{(ij)}(\text{shift sym.})$$

If eigenvalues of bosonic matrix = spacetime coordinate,

 $\mathcal{N} = 2$ matrix SUSY Bosonic shift symmetry

 $\frac{10d \mathcal{N} = 2 \text{ spacetime SUSY}}{\text{Translational symmetry}}$

 Note that bosonic action is positive definite in Euclidean signature, and prefers commuting configurations.

$$S_b \propto \operatorname{tr}(F_{\mu\nu}^2) \ge 0$$
 with $F_{\mu\nu} = -i[A_\mu, A_\nu]$

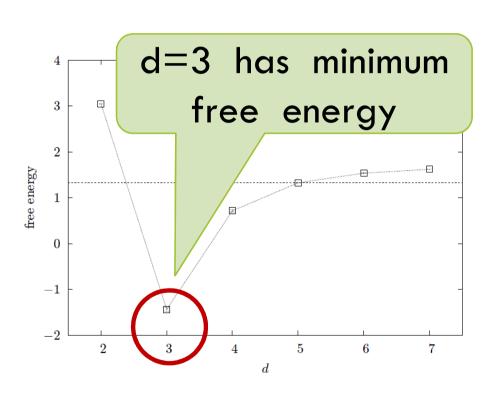
$$F_{\mu\nu} = -i[A_{\mu}, A_{\nu}]$$

$$A_{\mu} = \begin{pmatrix} x_{\mu} & \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

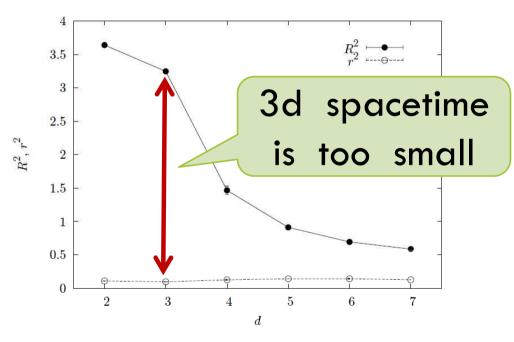
 $A_{\mu} = \begin{pmatrix} x_{\mu} & \mathbf{0} \\ \mathbf{0} \end{pmatrix} \qquad \qquad \text{Dynamically generated} \\ \text{N discrete spacetime points}$

Problem of Euclidean model

□ A study by GEM for Euclidean IIB matrix model.



[Nishimura, Okubo, Sugino 2011]



 $\hfill\Box$ Free energy prefers $SO(10)\to SO(3)$, and spacetime is too small compared to extra dimensions.

IR cutoff in temporal direction

 Bosonic part of the action is problematic due to the indefinite signature.

$$\operatorname{tr}(F_{\mu\nu}F^{\mu\nu}) = -2\operatorname{tr}(F_{0i})^2 + \operatorname{tr}(F_{ij})^2$$
 with $F_{\mu\nu} = -i[A_{\mu}, A_{\nu}]$

- Note that the Euclidean model is well defined and temporal direction is the source of the problem. We need to mod out boost transformation from integration measure.
- □ Let's introduce a cutoff in temporal direction, which "gauge fix" SO(9,1) to SO(9) in general.

$$\frac{1}{N}\operatorname{tr}(A_0)^2 \le \kappa \frac{1}{N}\operatorname{tr}(A_i)^2$$

Important question is whether we can remove this constraint in the large N limit.

IR cutoff in spatial direction

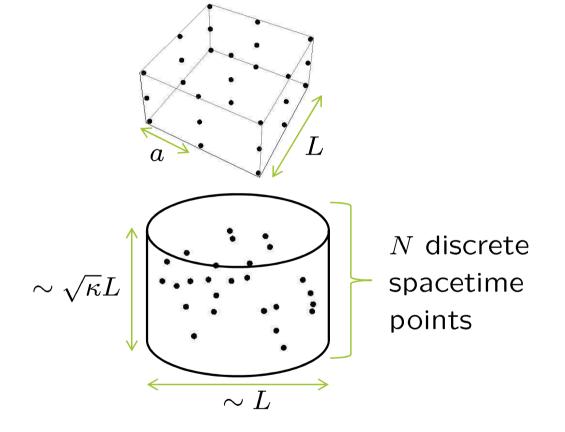
$$\begin{split} Z &= \int dA \ Pf(\mathcal{M}) \ e^{iS_b} \ \theta \left(-\frac{1}{N} \mathrm{tr}(A_0)^2 + \kappa \frac{1}{N} \mathrm{tr}(A_i)^2 \right) \\ &= \int dA \ Pf(\mathcal{M}) (\lim_{\epsilon \to 0} e^{-\epsilon |S_b|}) e^{iS_b} \ \theta(\ldots) \\ &= \int dA \ Pf(\mathcal{M}) \lim_{\epsilon \to 0} \int_0^\infty dr \ \delta \left(\frac{1}{N} \mathrm{tr}(A_i)^2 - r \right) e^{-\epsilon |S_b| + iS_b} \ \theta(\ldots) \\ &\text{rescale } A_\mu \to \sqrt{r} A_\mu \\ &= \int dA \ Pf(\mathcal{M}) \lim_{\epsilon \to 0} \int_0^\infty dr \ r^{\frac{18}{2}(N^2 - 1)} \frac{1}{r} \delta \left(\frac{1}{N} \mathrm{tr}(A_i)^2 - 1 \right) \ e^{r^2(-\epsilon |S_b| + iS_b)} \ \theta(\ldots) \\ &= \int dA \ \delta(\ldots) \ \theta(\ldots) \ Pf(\mathcal{M}) \lim_{\epsilon \to 0} \int_0^\infty dr \ r^{9(N^2 - 1)} \frac{1}{r} \ e^{r^2(-\epsilon |S_b| + iS_b)} \\ &\text{diverges when } S_b \to 0 \\ &= \int dA \ \delta(\ldots) \ \theta(\ldots) \ Pf(\mathcal{M}) \lim_{L \to \infty} \lim_{\epsilon \to 0} \int_0^{L^2} dr \ r^{9(N^2 - 1) - 1} \ e^{r^2(-\epsilon |S_b| + iS_b)} \\ &d\tilde{A} \quad \text{scale fixed} \\ &\text{boost sym fixed} \\ \end{split}$$

Comparison with lattice regularization

Lattice

lattice spacing $a \to 0$ volume of the box $L^d \to \infty$

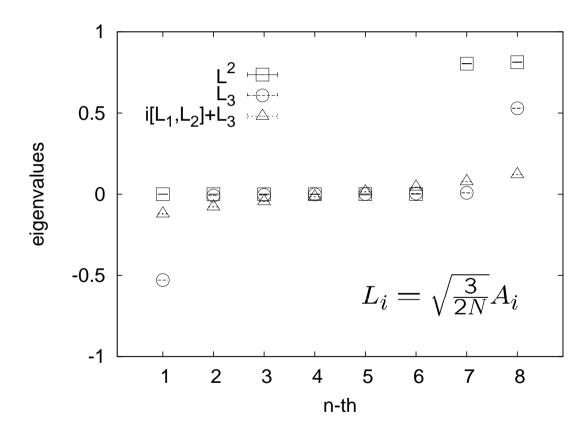
$$\begin{array}{l} \text{matrix size } N \to \infty \\ \frac{1}{N} \text{tr} A_i^2 \le L^2 \to \infty \\ \frac{1}{N} \text{tr} A_0^2 \le \kappa L^2 \to \infty \end{array}$$



- □ In contrast to lattice, SUSY is broken only by IR cutoffs.
- □ After continuum limit (\sim N) and infinite volume limit (\sim L), only one parameter (\sim kappa) remains.

Mechanism of SSB

Without any Ansatz



2x2 representation of SU(2) algebra gives the maximum,
 which explains 3 expanding spaces.

Lorentzian vs Euclidean

Let's consider a solution to simple equatiion.

$$X_{\mu}^{2}=0$$
 Euclidean : $X_{\mu}=0$ Lorentzian : light-like solutions

□ In our case,

Lorentzian

$$trF^2 = 0 \rightarrow 2trF_{0i}^2 = trF_{ij}^2$$

noncommutative: Lie algebraic, ...

Euclidean

$$trF^2 = 0 \rightarrow 2trF_{0i}^2 = trF_{ij}^2 = 0$$

commutative

Wick rotation can not reproduce these solutions!

Mechanism of SSB

$$Z = \int d ilde{A} \ Pf(\mathcal{M}) \ f_{N,L}\left(rac{1}{N} {
m tr} F_{\mu
u}^2
ight)$$

$$\begin{cases} d\tilde{A} = dA \ \delta\left(\frac{1}{N} \operatorname{tr}(A_i)^2 - 1\right) \ \theta\left(\kappa - \frac{1}{N} \operatorname{tr}(A_0)^2\right) \\ \lim_{N,L \to \infty} f_{N,L}(x) = \delta(x) \end{cases}$$

$$\frac{1}{N} \operatorname{tr}(A_0)^2 \le \kappa \ , \quad \frac{1}{N} \operatorname{tr}(A_i)^2 = 1 \ , \quad -2 \operatorname{tr} F_{0i}^2 + \operatorname{tr} F_{ij}^2 = 0$$

Can we understand SSB in the large kappa?

$$trA_0^2$$

$$\kappa \uparrow \qquad \operatorname{tr} A_0^2 \uparrow \qquad \operatorname{tr} F_{0i}^2 \uparrow \qquad \operatorname{tr} F_{ij}^2 \uparrow$$

$$\mathsf{tr} F_{ij}^2$$

Maximize ${\rm tr} F_{ij}^2$ with $\frac{1}{N}{\rm tr} (A_i)^2 = 1$