Bastian Brandt

Institute for nuclear physics

In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

25.06.2012

arXiv: 1008.2143 / 1011.6172

Contents

1. Motivation:

The $N_f = 2$ chiral transition

- 2. Simulation setup
- 3. Status and strategy adjustment
- 4. Screening masses and chiral symmetry restoration
- 5. Spectral representation of correlators

QCD thermodynamics with two-flavours of Wilson fermions on large lattices \bigsqcup Motivation: The $N_f=2$ chiral transition

1. Motivation:

The $N_f = 2$ chiral transition

QCD thermodynamics with two-flavours of Wilson fermions on large lattices $\begin{tabular}{l} \begin{tabular}{ll} Wotivation: The $N_f=2$ chiral transition $$ \end{tabular}$

The $N_f = 2$ chiral transition – Scenarios

Two possible scenarios:

2nd order transition - O(4) universality

1st order transition

QCD thermodynamics with two-flavours of Wilson fermions on large lattices \Box Motivation: The $N_f = 2$ chiral transition

The $N_f = 2$ chiral transition – A challenging case

- Quark mass must be close enough to the chiral limit to show the right scaling behavior.
 - \Rightarrow Necessary $m_{\pi} \leq 300$ MeV at least
- Discretisation effects can be expected to be severe for finite T simulations. (See long time discrepancy between staggered results)
 - \Rightarrow Use $N_t \ge 12 16$ for Wilson fermions.

[Philipsen and Zeidlewicz (2010), arXiv:0812.1177]

- Control finite size effects.
 - \Rightarrow Use several volumes with idealy $N_s/N_t \geq 3$.

To disentangle causes for violations of critical scaling:

⇒ Need to separate different systematic effects!

QCD thermodynamics with two-flavours of Wilson fermions on large lattices \Box Motivation: The $N_f = 2$ chiral transition

The $N_f = 2$ chiral transition – Status

- \blacktriangleright $N_f = 2$ Staggered fermions: Some studies, but all with $N_t \leq 6$ [e.g. Bonati et al arXiv:0901.3231] Contradictory results: O(2)/O(4) ruled out by newer studies. \Rightarrow Trustworthy for the task at hand? (Rooting? Taste breaking? ...) Twisted mass Wilson fermions: [tmft arXiv:1102.4530] $N_t < 12$ and $m_\pi \gtrsim 300$ MeV \Rightarrow not conclusive – O(4) scenario more likely ▶ *O*(*a*)-improved Wilson fermions: [QCDSF/DIK arXiv:1102.4461] $N_t \leq 14$ and 1 at $m_{\pi} = 200$ MeV, others $m_{\pi} \geq 350$ MeV \Rightarrow not conclusive – points towards O(4)Domain wall fermions: [HotQCD arXiv:1205.3535]
 - $N_t = 8$, $V = 16^3$, single quark mass, $m_{\pi} = 200$ MeV
 - ► $N_f = 2 + 1$ staggered: [HotQCD arXiv:1111.17.10] Signs for O(2) scaling already for physical strange quark masses.

⇒ Picture is not conclusive!

└─Simulation setup

2. Simulation setup

Action and scale setting

Action: Non-perturbatively $\mathcal{O}(a)$ -improved Wilson fermions Wilson plaquette gauge action

Algorithms: deflation accelerated DD-HMC [Lüscher (2004-2005), e.g. hep-lat/0509125] MP-HMC with DFL-SAP-GCR solver

[Marinkovic and Schäfer (2010), arXiv:1011.0911]

 \Rightarrow Good scaling properties with volume and quark masses.

Scale setting: r_0 in the chiral limit as determined by CLS

[Donnellan et al, arXiv:1012.3037; Fritzsch et al, arXiv:1205.5380]

Mass scale: PCAC mass converted to $\overline{\text{MS}}$ scheme

[ALPHA, hep-lat/0507035]

Pion masses: Conversion via continuum χ PT [B.B., A. Jüttner, H. Wittig, to be published]

Renormalisation: Interpolation of ALPHA results as used within CLS.

QCD thermodynamics with two-flavours of Wilson fermions on large lattices \Box Simulation setup

Temperature scan setup

Basic strategy:

- Use $N_t = 16$ for all scans.
- Use 3 different volumes: 32³, 48³ and 64³ (enables a finite volume scaling study; control FS effects)
- ▶ at least 3 different pion masses below $m_{\pi} \leq 300 \text{ MeV}$ (ideally even below the physical point)
- We scan in β :
 - First attempts: keep κ fixed
 ⇒ Quark mass changes along the scan
 (is problematic for Wilson fermions at small quark masses)
 Now: Keep renormalised quark mass fixed!
 ⇒ Line of constant physics (LCP)
 - (conceptually much cleaner)

QCD thermodynamics with two-flavours of Wilson fermions on large lattices \bigsqcup Simulation setup

Observables

Chiral transition:

- Chiral condensate $\langle \bar{\psi}\psi \rangle$ (subtracted and bare) Order parameter of the transition in the chiral limit. (Problematic due to additive and multiplicative renormalisation)
- Screening masses in various channels Sensitive to chiral symmetry restoration.

Deconfinement:

Polyakov loop L

Order parameter of the transition in the pure gauge limit.

• Quark number susceptibility χ_q

Measures the net number of quarks.

In addition: Associated susceptibilities and Binder cumulants.

3. Status and strategy adjustment

QCD thermodynamics with two-flavours of Wilson fermions on large lattices Status and strategy adjustment

 β -scans at fixed κ

So far two $N_t = 16$ scans:

- **B**: $\kappa = 0.136500$ (Test scan) $m_{\pi} \approx 540$ MeV at T_C
- **C**: $\kappa = 0.136575$ $m_{\pi} \approx 290$ MeV at estimated T_C

Two volumes: 32^3 and 64^3

60

50 $m_{ud}^{\overline{MS}}$ [MeV]

40 30

20

10 180200 220240260280

 $m_{\pi} = 540 \text{ MeV}$

 $m_{\pi} = 290 \text{ MeV}$

QCD thermodynamics with two-flavours of Wilson fermions on large lattices Status and strategy adjustment

 β -scans at fixed κ

So far two $N_t = 16$ scans:

- **B**: $\kappa = 0.136500$ (Test scan) $m_{\pi} \approx 540$ MeV at T_C
- **C**: $\kappa = 0.136575$ $m_{\pi} \approx 290$ MeV at estimated T_C

One volume: 48³

200

 $T \, [MeV]$

4

2

190

ě

220

210

QCD thermodynamics with two-flavours of Wilson fermions on large lattices - Status and strategy adjustment

 $\beta\text{-scans}$ at fixed κ

Looks good at first!

But as usual:

The devil is in the details!!!

Scaling and simulations in the chiral regime

Curve: $T_C(m_q) = T_C(0) \left(1 + C m_q^{1/(\delta\beta)}\right) \quad \Leftarrow \quad \text{(naive } O(4) \text{ scaling})$

Scanning along lines of constant physics

(LCP not perfect above T = 210 MeV due to recent updates on T = 0 results)

QCD thermodynamics with two-flavours of Wilson fermions on large lattices - Status and strategy adjustment

β -scans at LCP

C*: LCP at $m_{\pi} \approx 290$ MeV

Preliminary results!

(Statistic: ~3000 MD-units — approx. 10–30%)

Screening masses and chiral symmetry restoration

4. Screening masses and chiral symmetry restoration

QCD thermodynamics with two-flavours of Wilson fermions on large lattices Screening masses and chiral symmetry restoration

Screening masses and chiral symmetry

Channels for screening masses:

scalar (isovector) -S vector -Vpseudoscalar -P axial vector -A

Interesting symmetries: (for us)

$$V \stackrel{SU_A(2)}{\longleftrightarrow} A \\ S \stackrel{SU_A(2)}{\longleftrightarrow} P$$

Degeneracy signals chiral symmetry restoration!

[see e.g.: Cheng et al, arXiv:1010.1216; HotQCD, arXiv:1205.3535]

Screening masses and chiral symmetry restoration

C*: LCP at $m_{\pi} \approx 290$ MeV

Preliminary results!

(Statistic: \sim 3000 MD-units — approx. 10-30%)

Screening masses and chiral symmetry restoration

C*: LCP at $m_{\pi} \approx 290$ MeV

Preliminary results!

(Statistic: \sim 3000 MD-units — approx. 10-30%)

Spectral representation of correlation functions

5. Spectral representation of correlation functions

Temporal vector and axial vector correlation functions

[for an overview see e.g.: Ding et al, arXiv:1012.4963]

Temporal vector and axial vector correlation functions (at zero momentum) obey the spectral representation

$$G_{H}(t,T) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \rho_{H}(\omega,T) \frac{\cosh(\omega \left[t - 1/(2T)\right])}{\cosh(\omega/(2T))}$$

The associated spectral function ρ_H encodes information about plasma properties.

(electrical conductivity, thermal dilepton rate, ...)

Difficult to extract:

- Needs to be very close to the continuum ($N_t \ge 16$ at least).
- ► Sufficient control over finite size effects.

Our 16 \times 64 3 lattices might be at the lower border of what is necessary to be able to extract information.

QCD thermodynamics with two-flavours of Wilson fermions on large lattices \Box Spectral representation of correlation functions

Results on G_V and G_A along the LCP

Normalised by the free continuum correlation function.

See a flattening for $T > T_C$.

 \Rightarrow Appearance of transport properties.

(Encoded e.g. in the slope around t = T/2)

QCD thermodynamics with two-flavours of Wilson fermions on large lattices \Box Spectral representation of correlation functions

Results on G_V and G_A along the LCP

Normalised by the free continuum correlation function.

Similar behavior as in the vector case (at large t).

 G_V and G_A move closer together for large t above T_C . \Rightarrow Chiral symmetry restoration!

Conclusions and perspectives

Conclusions and perspectives

- ▶ The finite temperature project in Mainz aims to extract the order of the $N_f = 2$ chiral transition with controlled systematics using lattices of size 16×32^3 , 16×48^3 and 16×64^3 .
- We have readjusted our strategy and started to perform scans along lines of constant physics with $m_{\pi} \leq 300$ MeV.
- ► We measure screening masses in different channels to investigate the chiral symmetry restoration pattern and the strength of the U_A(1)-anomaly.
- In addition, we are interested in quantities that are related to plasma properties.
- I presented first results for vector correlators on large lattices with dynamical fermions that might allow to extract information about the associated spectral function.
- Simulation with yet lighter quarks are planned for the next year

Conclusions and perspectives

Thank you for your attention!