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Introduction
The determination of the QCD phase diagram in 
the temperature—quark density plane is becoming 
increasingly important, due to its impact in 
cosmology and in the physics of compact stars and 
of heavy-ion collisions.

The first-principle nonperturbative approach of discretizing QCD on a space-time 
lattice and performing numerical Monte Carlo simulations is plagued, at nonzero 
quark chemical potential, by the well-known sign problem: the fermionic 
determinant is complex and the Monte Carlo sampling becomes unfeasible.

Analytic continuation amongst the possible alternatives to solve (approximately) the 
sign problem: 
‣ imaginary chemical potential                ➜ positive measureµ = iµIM
‣ interpolation of the results at imaginary chemical potential
‣ analytic continuation:  

Alford-Kapustin-Wilczek (1999)

‣ limitations due to ambiguity in the interpolation and 
   nonanalyticities and periodicity,  we expect reliable estimation 
   for 

deForcrand-Philipsen (2003)

D’Elia-Lombardo (2003)

Lombardo (2000)

Roberge-Weiss (1986)

Re(µ)/T . 1

µIM ! �iµ



In previous works (Cea-Cosmai-D’Elia-Papa (2007,2008), Cea-Cosmai-D’Elia-Manneschi-Papa (2009)) 
we  have studied the 
analytic continuation of the pseudocritical line in the case of:

SU(2) with nf=8 staggered fermions and finite quark density

SU(3) with nf=8 staggered fermions and finite isospin density

SU(3) with nf=4 staggered fermions and finite quark density

direct simulations at real 
chemical potentials available

it was found that the nonlinear terms in the dependence of βc on μ2   in 
general cannot be neglected and that the extrapolation to real μ may be 
wrong otherwise.
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‣ deviations in the pseudocritical line from 
the linear behavior in μ2 for larger 
absolute values of μ2 were clearly seen 

‣ several possible  extrapolations to real μ up to   
μ/T≃0.6

Cea-Cosmai-D’Elia-Papa (2010)



In the present study we consider two-flavor QCD in presence of a quark 
or an isospin  chemical potential in the standard staggered discretization 
for fermion fields  

Zq/iso(T, µ) ⌘
Z

DUe�SG(detM [µ])
1
4 (detM [±µ])

1
4

analytic continuation of the critical line,         from imaginary to real    in the 
case of a finite       , where simulations are available both for imaginary and 
real       . Apply analytic continuation to the case of a finite    , also on the basis 
of what learned in the case of a finite       ;

Tc(µ) µ
µ

iso

µqµ
iso

µ
iso

comparison between the two theories at finite      or       , quantifying systematic 
differences for quantities like the curvature of the pseudocritical line at zero 
chemical potential;

µq µ
iso

nature of the transition as a function of the isospin chemical potential

Our purposes:



Numerical simulations 

163x4  lattice   (apart from some special cases where we varied spatial size to 
investigate the critical behavior);

bare quark mass am=0.05 corresponding to mπ ~ 400 MeV;

Rational Hybrid Monte Carlo (RHMC) algorithm, properly modified for the inclusion 
of quark/isospin chemical potential;

typical statistics  10k trajectories of 1 Molecular Dynamics unit for each run,  100k 
trajectories for 4-5  β values around the pseudocritical point, for each μ2,  in 
order to correctly sample the critical behavior at the transition;

the pseudocritical β(μ2) has been determined as the value for which the 
susceptibility of the (real part of the) Polyakov loop exhibits a peak. We have 
verified that the determinations are consistent for other observables.
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ratio of a fourth to second-order polynomial (see Fig. 1
and Table II for the fit parameters and their uncertainties).
Also the fit with a sixth-order polynomial and the ‘‘physi-
cal’’ fit defined below give a reasonable global fit, with
!2=d:o:f: & 2.
However, it is interesting to notice that a simple linear

function in "2 fits well if one includes all data but those
with "2 <!0:3752 (see 2nd row of Table II). That means
that, contrary to what we observed in our previous studies,
in this case nonlinear corrections are more important for
imaginary values of " than for real ones, where instead, in
the range explored in the present study and within errors,
they are negligible.
We have tried several kind of interpolations of the

pseudocritical couplings at "2 " 0. At first, we have con-
sidered interpolations with polynomials up to order"6 (see
Table II, 3rd to 6th rows, for a summary of the resulting fit
parameters). We can see that data at "2 " 0 are precise
enough to be sensitive to terms beyond the order "2;
indeed, a good !2=d:o:f: is not achieved before including
terms up to the order "6.
As in Ref. [21], we performed a ‘‘constrained’’ fit: first,

the largest interval ½ð"=ð#TÞÞ2min; 0& was identified where
data could be interpolated by a first-order polynomial
in ð"=ð#TÞÞ2, with a !2=d:o:f ' 1; it turned out that
ð"=ð#TÞÞ2min ¼ !0:3752. Then, all available data were
fitted by a sixth-order polynomial, with the constant term
and the quadratic coefficient fixed at 5.3232 and !0:368,
respectively (see Table II, 7th row).
Then, we have considered interpolations with ratios of

polynomials of order up to ð"=ð#TÞÞ4. The interpolation
with the least number of parameters for which we got a
good fit is the ratio of a fourth- to second-order polynomial,
see Table II, 8th row and Fig. 2(left).
Finally, we have tried here the fit strategy first suggested

in Ref. [21], consisting in writing the interpolating function
in physical units and to deduce from it the functional
dependence of $c on "2, after establishing a suitable
correspondence between physical and lattice units. The
natural, dimensionless variables of our theory are
T=Tcð0Þ, where Tcð0Þ is the pseudocritical temperature at
zero chemical potential, and "=ð#TÞ. The ratio T=Tcð0Þ is
deduced from the relation T ¼ 1=ðNtað$ÞÞ, whereNt is the
number of lattice sites in the temporal direction and að$Þ is
the lattice spacing at a given $. Strictly speaking the lattice
spacing depends also on the bare quark mass, however
in the following evaluation, which is only based on the
perturbative two-loop expression of að$Þ for Nc ¼ 3 and
nf ¼ 2, we shall neglect such dependence.
We considered the following physical fit ratio (x )

½"=ð#Tcð"ÞÞ&2):
!
Tcð0Þ
Tcð"Þ

"
2
¼ 1þ Axþ Bx2

1þ Cx
; (3)

leading to the following implicit relation between $c and
"2:

TABLE I. Summary of the values of $cð"2Þ for finite isospin
SU(3) with nf ¼ 2 on the 163 + 4 lattice with fermionic mass
am ¼ 0:05.

"=ð#TÞ $c

0:475i 5.41670(31)
0:4625i 5.40948(40)
0:450i 5.40429(51)
0:435i 5.39780(59)
0:4175i 5.39012(49)
0:400i 5.38353(44)
0:375i 5.37588(61)
0:350i 5.36799(62)
0:327i 5.36239(64)
0:300i 5.35570(50)
0:260i 5.34820(47)
0:230i 5.3425(10)
0:200i 5.33800(52)
0:165i 5.33304(85)
0:120i 5.3289(12)
0. 5.32371(86)
0.050 5.3199(24)
0.100 5.3189(22)
0.150 5.31486(82)
0.200 5.3091(13)
0.250 5.3022(28)
0.300 5.2928(15)
0.350 5.2788(15)
0.400 5.2657(18)
0.425 5.26079(94)
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FIG. 1 (color online). Pseudocritical couplings obtained in
finite isospin SU(3) with nf ¼ 2 on a 163 + 4 lattice with am ¼
0:05, both at "2 " 0 (diamonds) and "2 > 0 (circles). The
dashed line represents a global fit to all data with the ratio of
a fourth- to second-order polynomial; the solid lines around the
fitting curve delimit the 95% confidence level (CL) band.

CEA et al. PHYSICAL REVIEW D 85, 094512 (2012)

094512-4



Interpolating �c(µ
2)

�c(µ
2) =

a0 + a1(µ/(⇡T ))2 + a2(µ/(⇡T ))4 + a3(µ/(⇡T ))6

1 + a4(µ/(⇡T ))2

➡ Fit to all data requires 
at least a ratio (4,2) 

➡ Fit to all data with 

      linear (in μ2) fit  OK
i.e. non linear corrections  
more important for 
imaginary values of μ than 
for real ones (contrary to 
our previous studies)

(µ/⇡T )2 � �0.3752

ratio of polynomials 
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Analytic continuation of the ratio (4,2) interpolation

Data at μ2≤0 are precise 
enough to be sensitive to 
terms beyond the O(μ2)

Best interpolation using the ratio 
of polynomials O(μ4)/O(μ2)

�2/d.o.f. = 0.49

(4 parameters)

ratio of a fourth to second-order polynomial (see Fig. 1
and Table II for the fit parameters and their uncertainties).
Also the fit with a sixth-order polynomial and the ‘‘physi-
cal’’ fit defined below give a reasonable global fit, with
!2=d:o:f: & 2.
However, it is interesting to notice that a simple linear

function in "2 fits well if one includes all data but those
with "2 <!0:3752 (see 2nd row of Table II). That means
that, contrary to what we observed in our previous studies,
in this case nonlinear corrections are more important for
imaginary values of " than for real ones, where instead, in
the range explored in the present study and within errors,
they are negligible.
We have tried several kind of interpolations of the

pseudocritical couplings at "2 " 0. At first, we have con-
sidered interpolations with polynomials up to order"6 (see
Table II, 3rd to 6th rows, for a summary of the resulting fit
parameters). We can see that data at "2 " 0 are precise
enough to be sensitive to terms beyond the order "2;
indeed, a good !2=d:o:f: is not achieved before including
terms up to the order "6.
As in Ref. [21], we performed a ‘‘constrained’’ fit: first,

the largest interval ½ð"=ð#TÞÞ2min; 0& was identified where
data could be interpolated by a first-order polynomial
in ð"=ð#TÞÞ2, with a !2=d:o:f ' 1; it turned out that
ð"=ð#TÞÞ2min ¼ !0:3752. Then, all available data were
fitted by a sixth-order polynomial, with the constant term
and the quadratic coefficient fixed at 5.3232 and !0:368,
respectively (see Table II, 7th row).
Then, we have considered interpolations with ratios of

polynomials of order up to ð"=ð#TÞÞ4. The interpolation
with the least number of parameters for which we got a
good fit is the ratio of a fourth- to second-order polynomial,
see Table II, 8th row and Fig. 2(left).
Finally, we have tried here the fit strategy first suggested

in Ref. [21], consisting in writing the interpolating function
in physical units and to deduce from it the functional
dependence of $c on "2, after establishing a suitable
correspondence between physical and lattice units. The
natural, dimensionless variables of our theory are
T=Tcð0Þ, where Tcð0Þ is the pseudocritical temperature at
zero chemical potential, and "=ð#TÞ. The ratio T=Tcð0Þ is
deduced from the relation T ¼ 1=ðNtað$ÞÞ, whereNt is the
number of lattice sites in the temporal direction and að$Þ is
the lattice spacing at a given $. Strictly speaking the lattice
spacing depends also on the bare quark mass, however
in the following evaluation, which is only based on the
perturbative two-loop expression of að$Þ for Nc ¼ 3 and
nf ¼ 2, we shall neglect such dependence.
We considered the following physical fit ratio (x )

½"=ð#Tcð"ÞÞ&2):
!
Tcð0Þ
Tcð"Þ

"
2
¼ 1þ Axþ Bx2

1þ Cx
; (3)

leading to the following implicit relation between $c and
"2:

TABLE I. Summary of the values of $cð"2Þ for finite isospin
SU(3) with nf ¼ 2 on the 163 + 4 lattice with fermionic mass
am ¼ 0:05.

"=ð#TÞ $c

0:475i 5.41670(31)
0:4625i 5.40948(40)
0:450i 5.40429(51)
0:435i 5.39780(59)
0:4175i 5.39012(49)
0:400i 5.38353(44)
0:375i 5.37588(61)
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0:300i 5.35570(50)
0:260i 5.34820(47)
0:230i 5.3425(10)
0:200i 5.33800(52)
0:165i 5.33304(85)
0:120i 5.3289(12)
0. 5.32371(86)
0.050 5.3199(24)
0.100 5.3189(22)
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FIG. 1 (color online). Pseudocritical couplings obtained in
finite isospin SU(3) with nf ¼ 2 on a 163 + 4 lattice with am ¼
0:05, both at "2 " 0 (diamonds) and "2 > 0 (circles). The
dashed line represents a global fit to all data with the ratio of
a fourth- to second-order polynomial; the solid lines around the
fitting curve delimit the 95% confidence level (CL) band.
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a2ð!cð"2ÞÞj2-loop ¼ a2ð!cð0ÞÞj2-loop
1þ Axþ Bx2

1þ Cx
; (4)

with these resulting parameters

!cð0Þ ¼ 5:32422ð94Þ; A ¼ 4:077ð23Þ;
B ¼ 2:659ð77Þ; C ¼ 3:221ð26Þ;

(5)

and #2=d:o:f: ¼ 0:53. In Fig. 2(right) we compare the
physical fit ratio to data for !cð"2Þ.

In Fig. 3 we have plotted the extrapolations to the
interval 0 % "=ð$TÞ % 0:5 of the following fits:

(i) sixth-order constrained polynomial (seventh row in
Table II);

(ii) ratio (4,2) of polynomials (last row in Table II);
(iii) physical fit ratio, Eqs. (3)–(5);

The three curves agree as long as "=ð$TÞ & 0:2, but then
the sixth-order constrained polynomial deviates from the
other two curves. This means that different interpolations,
which all reproduce the trend of data in the fit region

&0:4752 % ð"=ð$TÞÞ2 % 0 and take correctly into ac-
count the deviation from the quadratic behavior in that
region, lead to distinct extrapolations, as it occurred in
nf ¼ 4 SU(3). We can see that ratio of polynomials
(Padé approximants) in general tend to be closer to direct
determinations of the pseudocritical couplings, which are
reported in the same figure for a few values of ð"=ð$TÞÞ2.

B. Nonzero quark chemical potential

In Table III we summarize our determinations of the
pseudocritical couplings. We have tried several kinds of
interpolation of the pseudocritical couplings at "2 % 0.
At first, we have considered interpolations with poly-
nomials up to order "6 (see Table IV, first to fourth
row, for a summary of the resulting fit parameters). We
can see that data at "2 % 0 are precise enough to be
sensitive to terms beyond the order "2; indeed, a good
#2=d:o:f: is not achieved before including terms up to
the order "4.

TABLE II. Parameters of the fits to the pseudocritical couplings in finite isospin SU(3) with nf ¼ 2 on a 163 ' 4 lattice with
fermionic mass am ¼ 0:05, according to the fit function !cð"2Þ ¼ ða0 þ a1ð"=ð$TÞÞ2 þ a2ð"=ð$TÞÞ4 þ a3ð"=ð$TÞÞ6Þ=ð1þ
a4ð"=ð$TÞÞ2Þ. Blank columns stand for terms not included in the fit. The asterisk denotes a constrained parameter. Fits are performed
in the interval ½"=ð$TÞÞ2min;"=ð$TÞÞ2max); the last two columns give the value of ð"=ð$TÞÞ2min;max.

a0 a1 a2 a3 a4 #2=d:o:f: ð"=ð$TÞÞ2min ð"=ð$TÞÞ2max

5.32326(62) 16.755(10) &1:072ð26Þ 3.2143(19) 0.60 &0:4752 0:4252

5.32385(54) &0:3597ð60Þ 0.96 &0:3752 0:4252

5.31940(76) &0:4192ð47Þ 18.3 &0:4752 0
5.3232(11) &0:368ð12Þ 0.59 &0:3752 0
5.3255(14) &0:286ð25Þ 0.511(94) 1.85 &0:4752 0
5.3235(21) &0:374ð68Þ &0:36ð63Þ &2:4ð1:7Þ 0.43 &0:4752 0
5:3232* &0:368* &0:253ð91Þ &2:01ð44Þ 0.62 &0:4752 0
5.32403(94) 14.602(14) &0:844ð44Þ 2.8066(25) 0.49 &0:4752 0
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FIG. 2 (color online). Fits to the pseudocritical couplings in finite isospin SU(3) with nf ¼ 2 on a 163 ' 4 lattice with fermionic
mass am ¼ 0:05: ratio of a fourth- to second-order polynomial (left) and physical fit according to the function (4) (right).
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“Physical” fit 
write the interpolating function in “physical” units:


Tc(0)

Tc(µ)

�2
=

1 + Ax + B x

2

1 + C x

T/Tc(0)

a

2(�c(µ
2))|

2�loop

= a

2(�c(0))|2�loop

⇥
1 + Ax + B x

2

1 + C x

T =
1

(Nta(�))

x ⌘ µ/(⇡T ) ,

�c(0) =5.32422(94) , A = 4.077(23)

B =2.659(77) , C = 3.221(26)

�2/d.o.f. = 0.53

fit parameters

implicit relation between βc and μ2

a2ð!cð"2ÞÞj2-loop ¼ a2ð!cð0ÞÞj2-loop
1þ Axþ Bx2

1þ Cx
; (4)

with these resulting parameters

!cð0Þ ¼ 5:32422ð94Þ; A ¼ 4:077ð23Þ;
B ¼ 2:659ð77Þ; C ¼ 3:221ð26Þ;

(5)

and #2=d:o:f: ¼ 0:53. In Fig. 2(right) we compare the
physical fit ratio to data for !cð"2Þ.

In Fig. 3 we have plotted the extrapolations to the
interval 0 % "=ð$TÞ % 0:5 of the following fits:

(i) sixth-order constrained polynomial (seventh row in
Table II);

(ii) ratio (4,2) of polynomials (last row in Table II);
(iii) physical fit ratio, Eqs. (3)–(5);

The three curves agree as long as "=ð$TÞ & 0:2, but then
the sixth-order constrained polynomial deviates from the
other two curves. This means that different interpolations,
which all reproduce the trend of data in the fit region

&0:4752 % ð"=ð$TÞÞ2 % 0 and take correctly into ac-
count the deviation from the quadratic behavior in that
region, lead to distinct extrapolations, as it occurred in
nf ¼ 4 SU(3). We can see that ratio of polynomials
(Padé approximants) in general tend to be closer to direct
determinations of the pseudocritical couplings, which are
reported in the same figure for a few values of ð"=ð$TÞÞ2.

B. Nonzero quark chemical potential

In Table III we summarize our determinations of the
pseudocritical couplings. We have tried several kinds of
interpolation of the pseudocritical couplings at "2 % 0.
At first, we have considered interpolations with poly-
nomials up to order "6 (see Table IV, first to fourth
row, for a summary of the resulting fit parameters). We
can see that data at "2 % 0 are precise enough to be
sensitive to terms beyond the order "2; indeed, a good
#2=d:o:f: is not achieved before including terms up to
the order "4.

TABLE II. Parameters of the fits to the pseudocritical couplings in finite isospin SU(3) with nf ¼ 2 on a 163 ' 4 lattice with
fermionic mass am ¼ 0:05, according to the fit function !cð"2Þ ¼ ða0 þ a1ð"=ð$TÞÞ2 þ a2ð"=ð$TÞÞ4 þ a3ð"=ð$TÞÞ6Þ=ð1þ
a4ð"=ð$TÞÞ2Þ. Blank columns stand for terms not included in the fit. The asterisk denotes a constrained parameter. Fits are performed
in the interval ½"=ð$TÞÞ2min;"=ð$TÞÞ2max); the last two columns give the value of ð"=ð$TÞÞ2min;max.

a0 a1 a2 a3 a4 #2=d:o:f: ð"=ð$TÞÞ2min ð"=ð$TÞÞ2max

5.32326(62) 16.755(10) &1:072ð26Þ 3.2143(19) 0.60 &0:4752 0:4252

5.32385(54) &0:3597ð60Þ 0.96 &0:3752 0:4252

5.31940(76) &0:4192ð47Þ 18.3 &0:4752 0
5.3232(11) &0:368ð12Þ 0.59 &0:3752 0
5.3255(14) &0:286ð25Þ 0.511(94) 1.85 &0:4752 0
5.3235(21) &0:374ð68Þ &0:36ð63Þ &2:4ð1:7Þ 0.43 &0:4752 0
5:3232* &0:368* &0:253ð91Þ &2:01ð44Þ 0.62 &0:4752 0
5.32403(94) 14.602(14) &0:844ð44Þ 2.8066(25) 0.49 &0:4752 0
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FIG. 2 (color online). Fits to the pseudocritical couplings in finite isospin SU(3) with nf ¼ 2 on a 163 ' 4 lattice with fermionic
mass am ¼ 0:05: ratio of a fourth- to second-order polynomial (left) and physical fit according to the function (4) (right).
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Extrapolations to real isospin chemical potentials 
together with results from simulations at real values  

Agreement between extrapolations as 
long as 

Sixth order constrained extrapolation 
deviates from the other two extrapolations

ratio (4,2) is quite close to the direct 
determinations of the pseudocritical 
couplings 

µ/(⇡T ) . 0.2

Different interpolations that well 
reproduce imaginary data, lead to distinct 
extrapolations (as we have seen for nf=4 
SU(3)) 

As in the case of isospin chemical potential, we have
performed a constrained fit. The largest interval for which
a linear fit in !2 works well is ½ð!=ð"TÞÞ2min; 0$ with
ð!=ð"TÞÞ2min ¼ &0:3102; we notice that such interval
was larger (ð!=ð"TÞÞ2min ¼ &0:3752) in the case of an
isospin chemical potential. Then, all available data were
fitted by a sixth-order polynomial, with the constant term
and the quadratic coefficient fixed at 5.32283 and &0:410,
respectively, (see Table IV, 5th row).

Then, we have considered interpolations with ratios of
polynomials: the one with the least number of parameters

for which we got a good fit is the ratio of a fourth- to
second-order polynomial [see Table IV, sixth row, and
Fig. 4(left)].
Finally, we have also tried the physical fit, as in the

previous subsection, obtaining the following results for the
physical fit ratio, Eq. (3):

#cð0Þ ¼ 5:32373ð90Þ; A ¼ 8:140ð32Þ;
B ¼ 6:59ð26Þ; C ¼ 7:201ð35Þ; (6)

with $2=d:o:f: ¼ 0:51, see Fig. 4(right) for a comparison
of the fit to data for #cð!2Þ.
Such interpolation permits, in principle, an extrapolation

to real chemical potentials down to T ¼ 0; from the pa-
rameters given in (6) one can get the extrapolation at T ¼ 0

of the pseudocritical quark chemical potential: !c '
"

ffiffiffiffiffiffiffiffiffiffi
C=B

p
¼ 3:284ð65ÞTcð0Þ. This result agrees within errors

with the analogous one obtained in Ref. [14] for SU(3)
with nf ¼ 2 Wilson fermions on a smaller lattice and with
smaller statistics, which turned out to be 2.73(58) Tcð0Þ.
However, a comparison of different extrapolations

shows that systematic effects become important well be-
fore one approaches the T ¼ 0 axis. In Fig. 5 we have
plotted the extrapolations to the interval 0 ( !=ð"TÞ (
0:5 of the following fits:
(i) sixth-order constrained polynomial (fifth row in

Table IV);
(ii) ratio (4,2) of polynomials (last row in Table IV);
(iii) physical fit ratio, Eqs. (3), (4), and (6).

The three curves agree as long as !=ð"TÞ & 0:1, but then
the sixth-order constrained polynomial deviates from the
other two curves. Therefore results extrapolated to larger
values of ! are not reliable. One could take the analogous
results obtained at finite isospin chemical potential as a
guiding reference, concluding that Padé like fits are to be
preferred; however one cannot exclude that such argument
may be wrong because of possible systematic differences
between QCD at finite quark and isospin chemical
potentials.

III. COMPARISON OF THE CURVATURES
OF THE CRITICAL LINES

In the present section we will focus on the curvature of
the pseudocritical line at! ¼ 0, which is the quantity with
the least ambiguity related to the procedure of analytic
continuation and for which a clear agreement among the
determinations obtained by various different methods has
been shown in previous literature [42,43]. Our purpose is to
determine how it changes when switching from a theory at
finite quark chemical potential to a theory at finite isospin
chemical potential.
In particular we want to determine the dependence of the

critical temperature Tcð!q;!isoÞ at the quadratic order in
!q and !iso, which is determined by the two curvatures

TABLE III. Summary of the values of #cð!2Þ for finite density
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am ¼ 0:05.
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0.280 5.35510(59)
0.290 5.35710(70)
0.300 5.35970(21)
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1=3 5.37067(75)
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FIG. 3 (color online). Extrapolation to real isospin chemical
potentials of the sixth-order constrained, ratio (4,2) of polyno-
mials and physical ratio fits (only the borders of the 95% CL
band have been reported). Data points (circles) are the results of
Monte Carlo simulations performed directly at real isospin
chemical potential.
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Nonzero quark chemical potential
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results obtained at finite isospin chemical potential as a
guiding reference, concluding that Padé like fits are to be
preferred; however one cannot exclude that such argument
may be wrong because of possible systematic differences
between QCD at finite quark and isospin chemical
potentials.
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In the present section we will focus on the curvature of
the pseudocritical line at! ¼ 0, which is the quantity with
the least ambiguity related to the procedure of analytic
continuation and for which a clear agreement among the
determinations obtained by various different methods has
been shown in previous literature [42,43]. Our purpose is to
determine how it changes when switching from a theory at
finite quark chemical potential to a theory at finite isospin
chemical potential.
In particular we want to determine the dependence of the

critical temperature Tcð!q;!isoÞ at the quadratic order in
!q and !iso, which is determined by the two curvatures

TABLE III. Summary of the values of #cð!2Þ for finite density
SU(3) with nf ¼ 2 on the 163 ) 4 lattice with fermionic mass
am ¼ 0:05.

Imð!Þ=ð"TÞ #c

0. 5.32371(86)
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0.180 5.33524(71)
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FIG. 3 (color online). Extrapolation to real isospin chemical
potentials of the sixth-order constrained, ratio (4,2) of polyno-
mials and physical ratio fits (only the borders of the 95% CL
band have been reported). Data points (circles) are the results of
Monte Carlo simulations performed directly at real isospin
chemical potential.
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alone. Indeed one can show that, for two degenerate fla-
vors, the theory must be even under reflection of !q and
!iso separately (see Ref. [11] for a discussion on this
point), so that the mixed !q!iso term is absent and

Tcð!q;!isoÞ ¼ Tcð0Þ þ Aq!
2
q þ Aiso!

2
iso

þOð!4
q=iso;!

2
q!

2
isoÞ: (7)

In order to determine the two curvatures and compare
them in a consistent way, we have performed a common fit
to all the pseudocritical couplings at imaginary potentials
reported in Tables I and III with the following function:

"cð!q;!isoÞ ¼ "cð0Þ þ aq

!
!q

#T

"
2
þ aiso

!
!iso

#T

"
2
; (8)

including as many data points, both at imaginary and real
(when available) chemical potentials, as compatible with a
reasonable value of $2=d:o:f: As a matter of fact the ranges
of included chemical potentials coincide with those for
which a linear fit works well separately for !2

q or !2
iso

(see the second row of Tables II and IV), the only differ-
ence in this case being that "cð0Þ is taken as a common
parameter. The results of the fit are

aq ¼ %0:3997ð87Þ; aiso ¼ %0:3606ð67Þ
"cð0Þ ¼ 5:32370ð57Þ; $2=d:o:f: ¼ 0:93:

(9)

We notice that aq and aiso are not compatible within errors
and deviate from each other by about 4%.
A convenient way to report the two curvatures is in term

of dimensionless quantities, as follows:

Tcð!q;!isoÞ
Tcð0Þ

¼ 1þ Rq

!
!q

#T

"
2
þ Riso

!
!iso

#T

"
2
: (10)

The parameters Rq and Riso can be obtained, respectively,
from aq and aiso, in particular, one has

Rq=iso¼%1

a

@a

@"

########"cð0Þ
aq=iso¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

2"cð0Þ3

s
1

"Lð"cð0Þ;mqÞ
aq=iso;

(11)
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FIG. 4 (color online). Fits to the pseudocritical couplings in finite density SU(3) with nf ¼ 2 on a 163 & 4 lattice with fermionic
mass am ¼ 0:05: ratio of a fourth- to second-order polynomial (left) and physical fit according to the function (4) (right). The dashed
vertical line indicates the boundary of the first RW sector, Imð!Þ=ð#TÞ ¼ 1=3.

TABLE IV. Parameters of the fits to the pseudocritical couplings in finite density SU(3) with nf ¼ 2 on a 163 & 4 lattice with
fermionic mass am ¼ 0:05, according to the fit function "cð!2Þ ¼ ða0 þ a1ð!=ð#TÞÞ2 þ a2ð!=ð#TÞÞ4 þ a3ð!=ð#TÞÞ6Þ=ð1þ
a4ð!=ð#TÞÞ2Þ. Blank columns stand for terms not included in the fit. The asterisk denotes a constrained parameter. Fits are performed
in the interval ½ð!=ð#TÞÞ2min; 0(; the last column gives the value of ð!=ð#TÞÞ2min.

a0 a1 a2 a3 a4 $2=d:o:f: ð!=ð#TÞÞ2min

5.32189(78) %0:4262ð90Þ 2.87 %1=32

5.32283(83) %0:410ð10Þ 0.63 %0:3102

5.3242(13) %0:314ð44Þ 0.92(35) 0.85 %1=32

5.3226(12) %0:446ð86Þ %1:7ð1:7Þ %14:4ð9:7Þ 1.41 %1=32

5:32283) %0:410) %0:76ð13Þ %8:7ð5:4Þ 0.65 %1=32

5.32394(98) 25.736(24) %1:05ð61Þ 4.9002(45) 0.60 %1=32
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alone. Indeed one can show that, for two degenerate fla-
vors, the theory must be even under reflection of !q and
!iso separately (see Ref. [11] for a discussion on this
point), so that the mixed !q!iso term is absent and
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In order to determine the two curvatures and compare
them in a consistent way, we have performed a common fit
to all the pseudocritical couplings at imaginary potentials
reported in Tables I and III with the following function:
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including as many data points, both at imaginary and real
(when available) chemical potentials, as compatible with a
reasonable value of $2=d:o:f: As a matter of fact the ranges
of included chemical potentials coincide with those for
which a linear fit works well separately for !2

q or !2
iso

(see the second row of Tables II and IV), the only differ-
ence in this case being that "cð0Þ is taken as a common
parameter. The results of the fit are

aq ¼ %0:3997ð87Þ; aiso ¼ %0:3606ð67Þ
"cð0Þ ¼ 5:32370ð57Þ; $2=d:o:f: ¼ 0:93:

(9)

We notice that aq and aiso are not compatible within errors
and deviate from each other by about 4%.
A convenient way to report the two curvatures is in term

of dimensionless quantities, as follows:
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from aq and aiso, in particular, one has
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FIG. 4 (color online). Fits to the pseudocritical couplings in finite density SU(3) with nf ¼ 2 on a 163 & 4 lattice with fermionic
mass am ¼ 0:05: ratio of a fourth- to second-order polynomial (left) and physical fit according to the function (4) (right). The dashed
vertical line indicates the boundary of the first RW sector, Imð!Þ=ð#TÞ ¼ 1=3.
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fermionic mass am ¼ 0:05, according to the fit function "cð!2Þ ¼ ða0 þ a1ð!=ð#TÞÞ2 þ a2ð!=ð#TÞÞ4 þ a3ð!=ð#TÞÞ6Þ=ð1þ
a4ð!=ð#TÞÞ2Þ. Blank columns stand for terms not included in the fit. The asterisk denotes a constrained parameter. Fits are performed
in the interval ½ð!=ð#TÞÞ2min; 0(; the last column gives the value of ð!=ð#TÞÞ2min.

a0 a1 a2 a3 a4 $2=d:o:f: ð!=ð#TÞÞ2min

5.32189(78) %0:4262ð90Þ 2.87 %1=32

5.32283(83) %0:410ð10Þ 0.63 %0:3102

5.3242(13) %0:314ð44Þ 0.92(35) 0.85 %1=32
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“Physical” fit at nonzero quark chemical potential

fit parameters

�c(0) =5.32373(90) , A = 8.140(32)

B =6.59(26) , C = 7.201(35)

�2/d.o.f. = 0.51

extrapolation to real chemical potentials 
down to T=0 (but there are systematic 
effects!)
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nf=2 Wilson fermion (Nagata-Nakamura 2011)

alone. Indeed one can show that, for two degenerate fla-
vors, the theory must be even under reflection of !q and
!iso separately (see Ref. [11] for a discussion on this
point), so that the mixed !q!iso term is absent and

Tcð!q;!isoÞ ¼ Tcð0Þ þ Aq!
2
q þ Aiso!

2
iso

þOð!4
q=iso;!

2
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2
isoÞ: (7)

In order to determine the two curvatures and compare
them in a consistent way, we have performed a common fit
to all the pseudocritical couplings at imaginary potentials
reported in Tables I and III with the following function:

"cð!q;!isoÞ ¼ "cð0Þ þ aq
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including as many data points, both at imaginary and real
(when available) chemical potentials, as compatible with a
reasonable value of $2=d:o:f: As a matter of fact the ranges
of included chemical potentials coincide with those for
which a linear fit works well separately for !2

q or !2
iso

(see the second row of Tables II and IV), the only differ-
ence in this case being that "cð0Þ is taken as a common
parameter. The results of the fit are

aq ¼ %0:3997ð87Þ; aiso ¼ %0:3606ð67Þ
"cð0Þ ¼ 5:32370ð57Þ; $2=d:o:f: ¼ 0:93:

(9)

We notice that aq and aiso are not compatible within errors
and deviate from each other by about 4%.
A convenient way to report the two curvatures is in term

of dimensionless quantities, as follows:
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from aq and aiso, in particular, one has
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FIG. 4 (color online). Fits to the pseudocritical couplings in finite density SU(3) with nf ¼ 2 on a 163 & 4 lattice with fermionic
mass am ¼ 0:05: ratio of a fourth- to second-order polynomial (left) and physical fit according to the function (4) (right). The dashed
vertical line indicates the boundary of the first RW sector, Imð!Þ=ð#TÞ ¼ 1=3.

TABLE IV. Parameters of the fits to the pseudocritical couplings in finite density SU(3) with nf ¼ 2 on a 163 & 4 lattice with
fermionic mass am ¼ 0:05, according to the fit function "cð!2Þ ¼ ða0 þ a1ð!=ð#TÞÞ2 þ a2ð!=ð#TÞÞ4 þ a3ð!=ð#TÞÞ6Þ=ð1þ
a4ð!=ð#TÞÞ2Þ. Blank columns stand for terms not included in the fit. The asterisk denotes a constrained parameter. Fits are performed
in the interval ½ð!=ð#TÞÞ2min; 0(; the last column gives the value of ð!=ð#TÞÞ2min.

a0 a1 a2 a3 a4 $2=d:o:f: ð!=ð#TÞÞ2min

5.32189(78) %0:4262ð90Þ 2.87 %1=32

5.32283(83) %0:410ð10Þ 0.63 %0:3102

5.3242(13) %0:314ð44Þ 0.92(35) 0.85 %1=32

5.3226(12) %0:446ð86Þ %1:7ð1:7Þ %14:4ð9:7Þ 1.41 %1=32

5:32283) %0:410) %0:76ð13Þ %8:7ð5:4Þ 0.65 %1=32
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Extrapolations to real quark chemical potentials  
Comparison of different extrapolations: 

µ/(⇡T ) . 0.1 OK

Sixth order constrained polynomial 
deviates from the other two curves 

µ/(⇡T ) > 0.1

Using analysis at finite isospin one could 
argue that “ratio (4,2)” is preferred.

quark

HOWEVER one cannot exclude possible 
systematic differences between QCD at 
finite quark and isospin chemical 
potentials.

where a is the lattice spacing and !L ¼ að@g0=@aÞ is the
lattice beta-function. Making use of the perturbative two-
loop expression for !L, we get

Rq ¼ $0:515ð11Þ; Riso ¼ $0:465ð9Þ: (12)

It is interesting to compare our results with those of
previous studies. In Ref. [44] the same discretization and
bare quark mass have been adopted for QCD at real isospin
chemical potential; their result, when reported in the same
units as ours, is Riso ¼ 0:426ð19Þ: the marginal discrep-
ancy can be explained in terms of either the inexact
R-algorithm or the smaller spatial volume used in
Ref. [44]. Rq ¼ $0:500ð34Þ has been obtained in
Ref. [5] for the same theory with a smaller fermion mass,
am ¼ 0:025: this is compatible with our result, showing
that Rq has mild dependence on the quark mass. In
Ref. [14] a value Rq ¼ $0:38ð12Þ has been reported mak-
ing use of nf ¼ 2Wilson fermions: the agreement, even if
within quite large errors, is encouraging if we consider the
completely different fermion discretization. Instead, as is
well-known, the curvature changes significantly if we
change the number of flavors; for instance for nf ¼ 4
QCD one obtains Rq ¼ $0:792ð10Þ [6,12].

Our determinations of Rq and Riso are clearly affected by
the systematic error related to the choice of the two-loop
expression for !L, anyway such error disappears if we
consider the ratio

Rq-iso ¼
Rq $ Riso

Rq
¼ aq $ aiso

aq
¼ 0:098ð26Þ; (13)

which we consider as our final estimate for the difference
in the curvature of the critical line between the theory at

finite baryon density and the theory at finite isospin density.
In order to appreciate the difference, in Fig. 6 we report
the corresponding linear extrapolations to real chemical
potentials.
In previous studies the two curvatures revealed to be

compatible within errors [44,45]. This is also the expecta-
tion in the limit of a large number of colors Nc [46–50]:
indeed the two curvatures are expected to be the same at
the leading order 1=Nc [46] (the curvature itself is expected
to vanish as Nc ! 1). Therefore, we can consider the
deviation that we find as the first evidence for an
Oð1=N2

cÞ difference between the two theories at small
chemical potentials. Rq-iso, being the ratio of an Oð1=N2

cÞ
to an Oð1=NcÞ quantity, is expected to be Oð1=NcÞ: this is
compatible with the fact that it turns out to be of the order
of 10%. It would be interesting to explore how results
change for different values of Nc.

IV. ORDER OF THE PHASE TRANSITION

As already stressed in the Introduction, the nature of the
pseudocritical line at imaginary "q, may be strongly in-
fluenced by the order of the RW endpoint [26–29], i.e., the
point at which the RW line taking place in the high-T
region for Imð"qÞ=T ¼ #=3 meets the analytic continu-

ation of the physical pseudocritical line. If the endpoint is
first order then it is actually a triple point and at least the
part of the pseudocritical line which is closest to the
endpoint is expected to be first order.
In the case of nf ¼ 2, with the same regularization and

temporal size (Nt ¼ 4) used in the present study, it is
known that the RW endpoint is first order, in the low-
mass region, for am< amt1 with amt1 ¼ 0:043ð5Þ [28].
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FIG. 5 (color online). Extrapolation to real quark chemical
potentials of the sixth-order constrained, ratio (4,2) of polyno-
mials and physical ratio fits (only the borders of the 95% CL
band have been reported).
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FIG. 6 (color online). Comparison between the extrapolations
to real quark and isospin chemical potential of the fits linear in
"=ð#TÞ2. Data points (circles) are the results of Monte Carlo
simulations performed directly at real isospin chemical potential.
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As in the case of isospin chemical potential, we have
performed a constrained fit. The largest interval for which
a linear fit in !2 works well is ½ð!=ð"TÞÞ2min; 0$ with
ð!=ð"TÞÞ2min ¼ &0:3102; we notice that such interval
was larger (ð!=ð"TÞÞ2min ¼ &0:3752) in the case of an
isospin chemical potential. Then, all available data were
fitted by a sixth-order polynomial, with the constant term
and the quadratic coefficient fixed at 5.32283 and &0:410,
respectively, (see Table IV, 5th row).

Then, we have considered interpolations with ratios of
polynomials: the one with the least number of parameters

for which we got a good fit is the ratio of a fourth- to
second-order polynomial [see Table IV, sixth row, and
Fig. 4(left)].
Finally, we have also tried the physical fit, as in the

previous subsection, obtaining the following results for the
physical fit ratio, Eq. (3):

#cð0Þ ¼ 5:32373ð90Þ; A ¼ 8:140ð32Þ;
B ¼ 6:59ð26Þ; C ¼ 7:201ð35Þ; (6)

with $2=d:o:f: ¼ 0:51, see Fig. 4(right) for a comparison
of the fit to data for #cð!2Þ.
Such interpolation permits, in principle, an extrapolation

to real chemical potentials down to T ¼ 0; from the pa-
rameters given in (6) one can get the extrapolation at T ¼ 0

of the pseudocritical quark chemical potential: !c '
"

ffiffiffiffiffiffiffiffiffiffi
C=B

p
¼ 3:284ð65ÞTcð0Þ. This result agrees within errors

with the analogous one obtained in Ref. [14] for SU(3)
with nf ¼ 2 Wilson fermions on a smaller lattice and with
smaller statistics, which turned out to be 2.73(58) Tcð0Þ.
However, a comparison of different extrapolations

shows that systematic effects become important well be-
fore one approaches the T ¼ 0 axis. In Fig. 5 we have
plotted the extrapolations to the interval 0 ( !=ð"TÞ (
0:5 of the following fits:
(i) sixth-order constrained polynomial (fifth row in

Table IV);
(ii) ratio (4,2) of polynomials (last row in Table IV);
(iii) physical fit ratio, Eqs. (3), (4), and (6).

The three curves agree as long as !=ð"TÞ & 0:1, but then
the sixth-order constrained polynomial deviates from the
other two curves. Therefore results extrapolated to larger
values of ! are not reliable. One could take the analogous
results obtained at finite isospin chemical potential as a
guiding reference, concluding that Padé like fits are to be
preferred; however one cannot exclude that such argument
may be wrong because of possible systematic differences
between QCD at finite quark and isospin chemical
potentials.

III. COMPARISON OF THE CURVATURES
OF THE CRITICAL LINES

In the present section we will focus on the curvature of
the pseudocritical line at! ¼ 0, which is the quantity with
the least ambiguity related to the procedure of analytic
continuation and for which a clear agreement among the
determinations obtained by various different methods has
been shown in previous literature [42,43]. Our purpose is to
determine how it changes when switching from a theory at
finite quark chemical potential to a theory at finite isospin
chemical potential.
In particular we want to determine the dependence of the

critical temperature Tcð!q;!isoÞ at the quadratic order in
!q and !iso, which is determined by the two curvatures

TABLE III. Summary of the values of #cð!2Þ for finite density
SU(3) with nf ¼ 2 on the 163 ) 4 lattice with fermionic mass
am ¼ 0:05.

Imð!Þ=ð"TÞ #c

0. 5.32371(86)
0.100 5.3277(12)
0.180 5.33524(71)
0.200 5.33914(83)
0.245 5.34712(75)
0.260 5.35000(81)
0.270 5.35255(91)
0.280 5.35510(59)
0.290 5.35710(70)
0.300 5.35970(21)
0.310 5.36307(62)
0.320 5.36622(37)
0.327 5.36956(63)
1=3 5.37067(75)
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FIG. 3 (color online). Extrapolation to real isospin chemical
potentials of the sixth-order constrained, ratio (4,2) of polyno-
mials and physical ratio fits (only the borders of the 95% CL
band have been reported). Data points (circles) are the results of
Monte Carlo simulations performed directly at real isospin
chemical potential.
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THE CURVATURES OF THE CRITICAL LINES

Curvature of the pseudocritical line at μ=0

Common fit to all the pseudocritical couplings 
at imaginary (and real, when available) 
chemical potentials, including as many data 
points as compatible with a reasonable 
chisquare (*):

�c(µq, µiso

) = �c(0) + aq

✓
µq

⇡T

◆
2

+ a
iso

✓
µ

iso

⇡T

◆
2

aq = � 0.3997(87) , a
iso

= �0.3606(67)

�c(0) =5.32370(57) , �2/d.o.f . = 0.93 .

aq 6= a
iso

by  ∼〜～4 σ

Linear extrapolations 
to real chemical 
potentials

(*) the mixed terms is absent, for two degenerate flavors the theory 
is even under reflection of μq and μiso separately (D’Elia-Sanfilippo 
2009)

where a is the lattice spacing and !L ¼ að@g0=@aÞ is the
lattice beta-function. Making use of the perturbative two-
loop expression for !L, we get

Rq ¼ $0:515ð11Þ; Riso ¼ $0:465ð9Þ: (12)

It is interesting to compare our results with those of
previous studies. In Ref. [44] the same discretization and
bare quark mass have been adopted for QCD at real isospin
chemical potential; their result, when reported in the same
units as ours, is Riso ¼ 0:426ð19Þ: the marginal discrep-
ancy can be explained in terms of either the inexact
R-algorithm or the smaller spatial volume used in
Ref. [44]. Rq ¼ $0:500ð34Þ has been obtained in
Ref. [5] for the same theory with a smaller fermion mass,
am ¼ 0:025: this is compatible with our result, showing
that Rq has mild dependence on the quark mass. In
Ref. [14] a value Rq ¼ $0:38ð12Þ has been reported mak-
ing use of nf ¼ 2Wilson fermions: the agreement, even if
within quite large errors, is encouraging if we consider the
completely different fermion discretization. Instead, as is
well-known, the curvature changes significantly if we
change the number of flavors; for instance for nf ¼ 4
QCD one obtains Rq ¼ $0:792ð10Þ [6,12].

Our determinations of Rq and Riso are clearly affected by
the systematic error related to the choice of the two-loop
expression for !L, anyway such error disappears if we
consider the ratio

Rq-iso ¼
Rq $ Riso

Rq
¼ aq $ aiso

aq
¼ 0:098ð26Þ; (13)

which we consider as our final estimate for the difference
in the curvature of the critical line between the theory at

finite baryon density and the theory at finite isospin density.
In order to appreciate the difference, in Fig. 6 we report
the corresponding linear extrapolations to real chemical
potentials.
In previous studies the two curvatures revealed to be

compatible within errors [44,45]. This is also the expecta-
tion in the limit of a large number of colors Nc [46–50]:
indeed the two curvatures are expected to be the same at
the leading order 1=Nc [46] (the curvature itself is expected
to vanish as Nc ! 1). Therefore, we can consider the
deviation that we find as the first evidence for an
Oð1=N2

cÞ difference between the two theories at small
chemical potentials. Rq-iso, being the ratio of an Oð1=N2

cÞ
to an Oð1=NcÞ quantity, is expected to be Oð1=NcÞ: this is
compatible with the fact that it turns out to be of the order
of 10%. It would be interesting to explore how results
change for different values of Nc.

IV. ORDER OF THE PHASE TRANSITION

As already stressed in the Introduction, the nature of the
pseudocritical line at imaginary "q, may be strongly in-
fluenced by the order of the RW endpoint [26–29], i.e., the
point at which the RW line taking place in the high-T
region for Imð"qÞ=T ¼ #=3 meets the analytic continu-

ation of the physical pseudocritical line. If the endpoint is
first order then it is actually a triple point and at least the
part of the pseudocritical line which is closest to the
endpoint is expected to be first order.
In the case of nf ¼ 2, with the same regularization and

temporal size (Nt ¼ 4) used in the present study, it is
known that the RW endpoint is first order, in the low-
mass region, for am< amt1 with amt1 ¼ 0:043ð5Þ [28].
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FIG. 5 (color online). Extrapolation to real quark chemical
potentials of the sixth-order constrained, ratio (4,2) of polyno-
mials and physical ratio fits (only the borders of the 95% CL
band have been reported).
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FIG. 6 (color online). Comparison between the extrapolations
to real quark and isospin chemical potential of the fits linear in
"=ð#TÞ2. Data points (circles) are the results of Monte Carlo
simulations performed directly at real isospin chemical potential.
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⇠ O(1/Nc)

The curvatures in terms of dimensionless quantities
Tc(µq, µiso

)
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2
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1
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@�

����
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1

�L(�c(0),mq)
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a lattice spacing

lattice beta-function

(2-loop)
�L = a

@g0

@a

Rq = R
iso

(at the leading order 1/Nc)

(ratio:  to avoid the 
systematic error related 
to the choice of the two-
loop expression for βL)

first lattice evidence of the O(1/Nc2) 
difference between the two thories at small 
chemical potentials   ➼ D.Toublan (2005)

R
q,iso

⇠ Nf/Ncthe expectation is:

deForcrand-Philipsen (2003) am=0.025

Nagata-Nakamura (2011) - Wilson fermions
Kogut-Sinclair (2004) m=0.05 83x4 R algorithm

Rq = �0.515(11) R
iso

= �0.465(9)

�0.500(34)

�0.38(12)
�0.426(19)

4 flavors (D’Elia-Lombardo 2004, Cea-Cosmai-D’Elia-Papa 2010) ➔	 the curvature grows with nf�0.792(10)

WE 
FIND:

Rq�iso

=
Rq � R

iso

Rq
=

aq � a
iso

aq
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ORDER OF THE PHASE TRANSITION AT IMAGINARY 
CHEMICAL POTENTIALS

The phase structure at finite T and imaginary chemical potential may be important of its 
own and teach us something about the nonperturbative properties of QCD also at zero and 
small chemical potential.

The phase transition at the Roberge-Weiss endpoint could in principle have influence also 
far from the endpoint.

For Nf=2 the RW transition (μIM/πT=1/3):
‣ first order for small and high quark masses
‣ second order for intermediate quark masses
Bonati-Cossu-D’Elia-Sanfilippo (2011)

In the present study am=0.05 ➡ 2nd order RW 
for quark chemical potential 

see what happens for the isospin chemical 
potential, where the available range of 
imaginary values is larger

B ¼ b
!
1

am
" 1

amt2

"

!2=4 ¼ c
!
1

am
" 1

amt2

"
log

!
Ah

!
1

am
" 1

amt2

""
;

(14)

leading to amt2 ¼ 0:72ð5Þ and Ah % 10"2, with
!2=d:o:f: ¼ 2:2=4. Also in this case one should take into
account correlations among data for B and !2=4, hence we
prefer to stay conservative in our error estimate and state
amt2 ¼ 0:72ð8Þ.

We notice that both determinations, amt1 ¼ 0:043ð5Þ
and amt2 ¼ 0:72ð8Þ, are consistent with the fact that the
quark masses for which no metastabilities and double
peak distributions are observed (am ¼ 0:075, 0.2, 0.5)
are within the second order region.

IV. CONCLUSIONS AND PERSPECTIVES

We have confirmed the outcome of Ref. [16] regarding
the order of the endpoint of the RW transition for Nf ¼ 2
QCD: a first order endpoint (triple point) is present both in
the low mass and in the high mass limit; the endpoint is
second order for intermediate quark masses, which are
separated from the first order regions by two distinct
tricritical masses. Following an investigation performed
in Ref. [31] for the 3D 3-state Potts model in a negative
external field, which shares part of the same symmetries
studied in the present work, we have performed a careful
study of some parameters directly linked to the strength of
the first order transition, in particular, the Binder-Challa-
Landau cumulant of the plaquette and the gap of the order
parameter; that has permitted to obtain independent and

consistent determinations of the two tricritical masses.
Staying conservative with error estimates, we state as our
final result amt1 ¼ 0:043ð5Þ and amt2 ¼ 0:72ð8Þ. Such
results are summarized in Fig. 16, where we sketch a phase
diagram in the T-mq plane.
The value of amt1 corresponds to a pion mass of the

order of 400 MeV, hence we conclude that for physical
quark masses the RW endpoint should be well inside the
first order region. It is therefore of primary importance to
explore what is the fate of the further first order lines
departing from the triple point. One of them, in particular,
may reach the zero density axis or have a critical endpoint
arbitrarily close to it, which could have great influence on
the physics of strongly interacting matter right above the
deconfinement transition. The question is also strictly con-
nected to the problem of the order of the chiral transition
for Nf ¼ 2 [43,44].
Another important issue is of course to extend our

investigation to Nf ! 2 and confirm the conjecture that
the nature of the transition at " ¼ 0 may be regulated by
the physics of the RW endpoint [16], i.e. that the " ¼ 0
transition is first order only when the first order line depart-
ing from the RW triple point reaches the " ¼ 0 axis, and
that tricritical scaling indeed shapes the chiral critical
surface [19].
All these investigations will require extensive numerical

simulations, which are however perfectly feasible since
they involve an imaginary chemical potential. Part of this
program is progress.
We stress that our present results are valid for the

standard rooted staggered discretization of the theory and
for lattices with Nt ¼ 4, corresponding to a lattice spacing
of about 0.3 fm. A key issue is then also to verify that the
main features of the phase diagram remain unchanged
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FIG. 15 (color online). Binder-Challa-Landau cumulant of the
plaquette, extrapolated to the thermodynamical limit, and !2=4
for high quark masses where a first order transition is present.
We include the result from linear fits B1 ¼ bð1=ðamt2Þ "
1=ðamÞÞ, giving amt2 ¼ 0:71ð4Þ !2=d:o:f: ¼ 1:09 and
!2=4 ¼ cð1=ðamt2Þ " 1=ðamÞÞ, giving amt2 ¼ 0:67ð3Þ
(!2=d:o:f: ¼ 1:0). All masses have been included in the fit in
both cases.

TRW
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FIG. 16. Sketch of the phase diagram in the T-mq plane which
summarizes our results: in Nf ¼ 2 QCD the endpoint of the
Roberge-Weiss transition is first order close to the chiral and to
the quenched limit and second order for intermediate masses. A
conservative estimate for the two tricritical masses separating the
second order region from the first order ones, for the lattice
discretization adopted in the present work, is amt1 ¼ 0:043ð5Þ
and amt2 ¼ 0:72ð8Þ.
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ORDER OF THE PHASE TRANSITION

Normalized plaquette distribution at the 
pseudocritical coupling for different values of the 
isospin chemical potential

Imaginary isospin chemical potential may strengthen the transition as an imaginary quark 
potential does: a first-order transition could be manifest along the pseudocritical line 
(even for our quark mass value m=0.05). 

163 ⇥ 4
ISOSPIN CHEMICAL POTENTIAL

m = 0.05

That means that the mass used in the present work, am ¼
0:05, is close to the tricritical value but slightly on the
second-order side, so we do not expect the analytic con-
tinuation of the pseudocritical line to become first order as
we approach the RWendpoint. This is compatible with the
fact that we have not observed signals of metastable be-
havior or double peak distributions along the line; only a
strengthening of the transition can be seen as the RW
endpoint is approached, as a consequence of the closeness
of the tricritical point.

If one conjectures that an imaginary!iso may strengthen
the transition in the same way as an imaginary !q does,
then, since the range available for Imð!isoÞ is larger than
that available for Imð!qÞ, one may expect that a first-order
transition could be manifest at some stage along the pseu-
docritical line at imaginary !iso. Such a conjecture is
well-founded, since simulations at real isospin chemical
potential have shown that indeed the effect of small posi-
tive values of !2

iso is a weakening of the transition [51,52].
In order to explore this possibility, we have reported in

Fig. 7 the plaquette distributions at the pseudocritical
coupling for a few different values (both real and imagi-
nary) of !iso=ð"TÞ. It is evident that for the largest values
of !iso a double peak structure develops, hinting at the
presence of a first- order transition.

In order to confirm that by a finite-size scaling analysis,
we have repeated simulations for the largest value of
Imð!isoÞ, !iso=ð"TÞ ¼ 0:475i, on two other lattice sizes,
L ¼ 12 and L ¼ 20. Both the scaling of distributions and
the scaling of susceptibilities confirm the first-order nature
of the transition for this value of!iso: the well in the double
peak distribution of the plaquette deepens as L increases as
expected (see Fig. 8) and the maxima of the plaquette
susceptibility scale linearly with the spatial volume (see
Fig. 9).

Therefore we conclude that, for the present discretiza-
tion and value of the quark mass, the transition is surely
first order at !iso=ð"TÞ ¼ 0:475i and there is possibly a

critical point along the line at some smaller value of
Imð!isoÞ. Such nontrivial behavior resembles what hap-
pens for quark chemical potentials [26–29] and may have
consequences on the general structure of the QCD phase
diagram which should be further investigated in the future.

V. CONCLUSIONS

In this paper we have considered QCD with two degen-
erate flavors of bare mass am ¼ 0:05, corresponding to a
pion massm" $ 400 MeV, on a 163 % 4 lattice, at nonzero
quark or isospin density.
Our investigation developed along three main lines:
(i) localization of the pseudocritical line in the

temperature-chemical potential plane, for the two
cases of quark and isospin density;

(ii) comparison of the curvatures of the two critical lines
at the point of zero chemical potential;

(iii) study of the order of the phase transition along the
two critical lines.
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FIG. 7 (color online). Normalized plaquette distributions at the
pseudocritical coupling for different values of the isospin chemi-
cal potential.
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FIG. 8 (color online). Normalized plaquette distributions at the
pseudocritical coupling for different spatial lattice sizes and
!iso=ð"TÞ ¼ 0:475i.
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FIG. 9 (color online). Maxima of the plaquette susceptibility
as a function of the spatial volume for !iso=ð"TÞ ¼ 0:475i.
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Normalized plaquette distributions at the 
pseudocritical coupling for different spatial 
lattice sizes

Maxima of the plaquette susceptibility scale 
linearly with the spatial volume

We argue that (for nf=2 staggered fermions of mass am=0.05) the transition is first order at  μiso/πT=0.475i   
and there is possibly a critical point along the line at some smaller value of μiso/πT. 

µ
iso

/(⇡T ) = 0.475i am = 0.05

Such non-trivial behavior resembles what happens for quark chemical potentials and may have consequences on 
the general structure of the QCD phase diagram (deserves further investigations).

D’Elia-Sanfilippo (2009) deForcrand-Philipsen (2010) Bonati-Cossu-D’Elia-Sanfilippo  (2011) Bonati-deForcrand-D’Elia-Philipsen-Sanfilippo  (2011)

That means that the mass used in the present work, am ¼
0:05, is close to the tricritical value but slightly on the
second-order side, so we do not expect the analytic con-
tinuation of the pseudocritical line to become first order as
we approach the RWendpoint. This is compatible with the
fact that we have not observed signals of metastable be-
havior or double peak distributions along the line; only a
strengthening of the transition can be seen as the RW
endpoint is approached, as a consequence of the closeness
of the tricritical point.

If one conjectures that an imaginary!iso may strengthen
the transition in the same way as an imaginary !q does,
then, since the range available for Imð!isoÞ is larger than
that available for Imð!qÞ, one may expect that a first-order
transition could be manifest at some stage along the pseu-
docritical line at imaginary !iso. Such a conjecture is
well-founded, since simulations at real isospin chemical
potential have shown that indeed the effect of small posi-
tive values of !2

iso is a weakening of the transition [51,52].
In order to explore this possibility, we have reported in

Fig. 7 the plaquette distributions at the pseudocritical
coupling for a few different values (both real and imagi-
nary) of !iso=ð"TÞ. It is evident that for the largest values
of !iso a double peak structure develops, hinting at the
presence of a first- order transition.

In order to confirm that by a finite-size scaling analysis,
we have repeated simulations for the largest value of
Imð!isoÞ, !iso=ð"TÞ ¼ 0:475i, on two other lattice sizes,
L ¼ 12 and L ¼ 20. Both the scaling of distributions and
the scaling of susceptibilities confirm the first-order nature
of the transition for this value of!iso: the well in the double
peak distribution of the plaquette deepens as L increases as
expected (see Fig. 8) and the maxima of the plaquette
susceptibility scale linearly with the spatial volume (see
Fig. 9).

Therefore we conclude that, for the present discretiza-
tion and value of the quark mass, the transition is surely
first order at !iso=ð"TÞ ¼ 0:475i and there is possibly a

critical point along the line at some smaller value of
Imð!isoÞ. Such nontrivial behavior resembles what hap-
pens for quark chemical potentials [26–29] and may have
consequences on the general structure of the QCD phase
diagram which should be further investigated in the future.

V. CONCLUSIONS

In this paper we have considered QCD with two degen-
erate flavors of bare mass am ¼ 0:05, corresponding to a
pion massm" $ 400 MeV, on a 163 % 4 lattice, at nonzero
quark or isospin density.
Our investigation developed along three main lines:
(i) localization of the pseudocritical line in the

temperature-chemical potential plane, for the two
cases of quark and isospin density;

(ii) comparison of the curvatures of the two critical lines
at the point of zero chemical potential;

(iii) study of the order of the phase transition along the
two critical lines.
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FIG. 7 (color online). Normalized plaquette distributions at the
pseudocritical coupling for different values of the isospin chemi-
cal potential.
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FIG. 8 (color online). Normalized plaquette distributions at the
pseudocritical coupling for different spatial lattice sizes and
!iso=ð"TÞ ¼ 0:475i.
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FIG. 9 (color online). Maxima of the plaquette susceptibility
as a function of the spatial volume for !iso=ð"TÞ ¼ 0:475i.
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That means that the mass used in the present work, am ¼
0:05, is close to the tricritical value but slightly on the
second-order side, so we do not expect the analytic con-
tinuation of the pseudocritical line to become first order as
we approach the RWendpoint. This is compatible with the
fact that we have not observed signals of metastable be-
havior or double peak distributions along the line; only a
strengthening of the transition can be seen as the RW
endpoint is approached, as a consequence of the closeness
of the tricritical point.

If one conjectures that an imaginary!iso may strengthen
the transition in the same way as an imaginary !q does,
then, since the range available for Imð!isoÞ is larger than
that available for Imð!qÞ, one may expect that a first-order
transition could be manifest at some stage along the pseu-
docritical line at imaginary !iso. Such a conjecture is
well-founded, since simulations at real isospin chemical
potential have shown that indeed the effect of small posi-
tive values of !2

iso is a weakening of the transition [51,52].
In order to explore this possibility, we have reported in

Fig. 7 the plaquette distributions at the pseudocritical
coupling for a few different values (both real and imagi-
nary) of !iso=ð"TÞ. It is evident that for the largest values
of !iso a double peak structure develops, hinting at the
presence of a first- order transition.

In order to confirm that by a finite-size scaling analysis,
we have repeated simulations for the largest value of
Imð!isoÞ, !iso=ð"TÞ ¼ 0:475i, on two other lattice sizes,
L ¼ 12 and L ¼ 20. Both the scaling of distributions and
the scaling of susceptibilities confirm the first-order nature
of the transition for this value of!iso: the well in the double
peak distribution of the plaquette deepens as L increases as
expected (see Fig. 8) and the maxima of the plaquette
susceptibility scale linearly with the spatial volume (see
Fig. 9).

Therefore we conclude that, for the present discretiza-
tion and value of the quark mass, the transition is surely
first order at !iso=ð"TÞ ¼ 0:475i and there is possibly a

critical point along the line at some smaller value of
Imð!isoÞ. Such nontrivial behavior resembles what hap-
pens for quark chemical potentials [26–29] and may have
consequences on the general structure of the QCD phase
diagram which should be further investigated in the future.

V. CONCLUSIONS

In this paper we have considered QCD with two degen-
erate flavors of bare mass am ¼ 0:05, corresponding to a
pion massm" $ 400 MeV, on a 163 % 4 lattice, at nonzero
quark or isospin density.
Our investigation developed along three main lines:
(i) localization of the pseudocritical line in the

temperature-chemical potential plane, for the two
cases of quark and isospin density;

(ii) comparison of the curvatures of the two critical lines
at the point of zero chemical potential;

(iii) study of the order of the phase transition along the
two critical lines.
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cal potential.
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FIG. 8 (color online). Normalized plaquette distributions at the
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FIG. 9 (color online). Maxima of the plaquette susceptibility
as a function of the spatial volume for !iso=ð"TÞ ¼ 0:475i.
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Summary & Conclusions (1/3)
Localization of the pseudocritical line in the temperature-chemical potential plane, 
for the two cases of quark and isospin density by means of analytic continuation:

- deviations from the linear behavior in μ2 of the critical lines clearly seen for 
μ2<0 are nicely described by several analytic functions; however, the 
extrapolations to positive μ2 overlap, within errors, only as long as 

µ
iso

/(⇡T ) ' 0.2 µq/(⇡T ) ' 0.1

preference for extrapolations based on Padé approximants

As in the case of isospin chemical potential, we have
performed a constrained fit. The largest interval for which
a linear fit in !2 works well is ½ð!=ð"TÞÞ2min; 0$ with
ð!=ð"TÞÞ2min ¼ &0:3102; we notice that such interval
was larger (ð!=ð"TÞÞ2min ¼ &0:3752) in the case of an
isospin chemical potential. Then, all available data were
fitted by a sixth-order polynomial, with the constant term
and the quadratic coefficient fixed at 5.32283 and &0:410,
respectively, (see Table IV, 5th row).

Then, we have considered interpolations with ratios of
polynomials: the one with the least number of parameters

for which we got a good fit is the ratio of a fourth- to
second-order polynomial [see Table IV, sixth row, and
Fig. 4(left)].
Finally, we have also tried the physical fit, as in the

previous subsection, obtaining the following results for the
physical fit ratio, Eq. (3):

#cð0Þ ¼ 5:32373ð90Þ; A ¼ 8:140ð32Þ;
B ¼ 6:59ð26Þ; C ¼ 7:201ð35Þ; (6)

with $2=d:o:f: ¼ 0:51, see Fig. 4(right) for a comparison
of the fit to data for #cð!2Þ.
Such interpolation permits, in principle, an extrapolation

to real chemical potentials down to T ¼ 0; from the pa-
rameters given in (6) one can get the extrapolation at T ¼ 0

of the pseudocritical quark chemical potential: !c '
"

ffiffiffiffiffiffiffiffiffiffi
C=B

p
¼ 3:284ð65ÞTcð0Þ. This result agrees within errors

with the analogous one obtained in Ref. [14] for SU(3)
with nf ¼ 2 Wilson fermions on a smaller lattice and with
smaller statistics, which turned out to be 2.73(58) Tcð0Þ.
However, a comparison of different extrapolations

shows that systematic effects become important well be-
fore one approaches the T ¼ 0 axis. In Fig. 5 we have
plotted the extrapolations to the interval 0 ( !=ð"TÞ (
0:5 of the following fits:
(i) sixth-order constrained polynomial (fifth row in

Table IV);
(ii) ratio (4,2) of polynomials (last row in Table IV);
(iii) physical fit ratio, Eqs. (3), (4), and (6).

The three curves agree as long as !=ð"TÞ & 0:1, but then
the sixth-order constrained polynomial deviates from the
other two curves. Therefore results extrapolated to larger
values of ! are not reliable. One could take the analogous
results obtained at finite isospin chemical potential as a
guiding reference, concluding that Padé like fits are to be
preferred; however one cannot exclude that such argument
may be wrong because of possible systematic differences
between QCD at finite quark and isospin chemical
potentials.

III. COMPARISON OF THE CURVATURES
OF THE CRITICAL LINES

In the present section we will focus on the curvature of
the pseudocritical line at! ¼ 0, which is the quantity with
the least ambiguity related to the procedure of analytic
continuation and for which a clear agreement among the
determinations obtained by various different methods has
been shown in previous literature [42,43]. Our purpose is to
determine how it changes when switching from a theory at
finite quark chemical potential to a theory at finite isospin
chemical potential.
In particular we want to determine the dependence of the

critical temperature Tcð!q;!isoÞ at the quadratic order in
!q and !iso, which is determined by the two curvatures

TABLE III. Summary of the values of #cð!2Þ for finite density
SU(3) with nf ¼ 2 on the 163 ) 4 lattice with fermionic mass
am ¼ 0:05.

Imð!Þ=ð"TÞ #c

0. 5.32371(86)
0.100 5.3277(12)
0.180 5.33524(71)
0.200 5.33914(83)
0.245 5.34712(75)
0.260 5.35000(81)
0.270 5.35255(91)
0.280 5.35510(59)
0.290 5.35710(70)
0.300 5.35970(21)
0.310 5.36307(62)
0.320 5.36622(37)
0.327 5.36956(63)
1=3 5.37067(75)
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FIG. 3 (color online). Extrapolation to real isospin chemical
potentials of the sixth-order constrained, ratio (4,2) of polyno-
mials and physical ratio fits (only the borders of the 95% CL
band have been reported). Data points (circles) are the results of
Monte Carlo simulations performed directly at real isospin
chemical potential.
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where a is the lattice spacing and !L ¼ að@g0=@aÞ is the
lattice beta-function. Making use of the perturbative two-
loop expression for !L, we get

Rq ¼ $0:515ð11Þ; Riso ¼ $0:465ð9Þ: (12)

It is interesting to compare our results with those of
previous studies. In Ref. [44] the same discretization and
bare quark mass have been adopted for QCD at real isospin
chemical potential; their result, when reported in the same
units as ours, is Riso ¼ 0:426ð19Þ: the marginal discrep-
ancy can be explained in terms of either the inexact
R-algorithm or the smaller spatial volume used in
Ref. [44]. Rq ¼ $0:500ð34Þ has been obtained in
Ref. [5] for the same theory with a smaller fermion mass,
am ¼ 0:025: this is compatible with our result, showing
that Rq has mild dependence on the quark mass. In
Ref. [14] a value Rq ¼ $0:38ð12Þ has been reported mak-
ing use of nf ¼ 2Wilson fermions: the agreement, even if
within quite large errors, is encouraging if we consider the
completely different fermion discretization. Instead, as is
well-known, the curvature changes significantly if we
change the number of flavors; for instance for nf ¼ 4
QCD one obtains Rq ¼ $0:792ð10Þ [6,12].

Our determinations of Rq and Riso are clearly affected by
the systematic error related to the choice of the two-loop
expression for !L, anyway such error disappears if we
consider the ratio

Rq-iso ¼
Rq $ Riso

Rq
¼ aq $ aiso

aq
¼ 0:098ð26Þ; (13)

which we consider as our final estimate for the difference
in the curvature of the critical line between the theory at

finite baryon density and the theory at finite isospin density.
In order to appreciate the difference, in Fig. 6 we report
the corresponding linear extrapolations to real chemical
potentials.
In previous studies the two curvatures revealed to be

compatible within errors [44,45]. This is also the expecta-
tion in the limit of a large number of colors Nc [46–50]:
indeed the two curvatures are expected to be the same at
the leading order 1=Nc [46] (the curvature itself is expected
to vanish as Nc ! 1). Therefore, we can consider the
deviation that we find as the first evidence for an
Oð1=N2

cÞ difference between the two theories at small
chemical potentials. Rq-iso, being the ratio of an Oð1=N2

cÞ
to an Oð1=NcÞ quantity, is expected to be Oð1=NcÞ: this is
compatible with the fact that it turns out to be of the order
of 10%. It would be interesting to explore how results
change for different values of Nc.

IV. ORDER OF THE PHASE TRANSITION

As already stressed in the Introduction, the nature of the
pseudocritical line at imaginary "q, may be strongly in-
fluenced by the order of the RW endpoint [26–29], i.e., the
point at which the RW line taking place in the high-T
region for Imð"qÞ=T ¼ #=3 meets the analytic continu-

ation of the physical pseudocritical line. If the endpoint is
first order then it is actually a triple point and at least the
part of the pseudocritical line which is closest to the
endpoint is expected to be first order.
In the case of nf ¼ 2, with the same regularization and

temporal size (Nt ¼ 4) used in the present study, it is
known that the RW endpoint is first order, in the low-
mass region, for am< amt1 with amt1 ¼ 0:043ð5Þ [28].
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FIG. 5 (color online). Extrapolation to real quark chemical
potentials of the sixth-order constrained, ratio (4,2) of polyno-
mials and physical ratio fits (only the borders of the 95% CL
band have been reported).

0 0.1 0.2 0.3 0.4 0.5
µ/(πT) ,  µiso/(πT)

5.22

5.24

5.26

5.28

5.3

5.32

isospin
quark
simulations at real isospin

β c

FIG. 6 (color online). Comparison between the extrapolations
to real quark and isospin chemical potential of the fits linear in
"=ð#TÞ2. Data points (circles) are the results of Monte Carlo
simulations performed directly at real isospin chemical potential.
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Summary & Conclusions (2/3)
We have performed a careful determination of the curvatures of the two critical 
lines at zero chemical potential

First evidence for an 

difference between the two theories 
at small chemical potentials

It would be interesting to explore how results change for 
different values of Nc

➼ D.Toublan (2005)

Linear extrapolations 
to real chemical 
potentials

where a is the lattice spacing and !L ¼ að@g0=@aÞ is the
lattice beta-function. Making use of the perturbative two-
loop expression for !L, we get

Rq ¼ $0:515ð11Þ; Riso ¼ $0:465ð9Þ: (12)

It is interesting to compare our results with those of
previous studies. In Ref. [44] the same discretization and
bare quark mass have been adopted for QCD at real isospin
chemical potential; their result, when reported in the same
units as ours, is Riso ¼ 0:426ð19Þ: the marginal discrep-
ancy can be explained in terms of either the inexact
R-algorithm or the smaller spatial volume used in
Ref. [44]. Rq ¼ $0:500ð34Þ has been obtained in
Ref. [5] for the same theory with a smaller fermion mass,
am ¼ 0:025: this is compatible with our result, showing
that Rq has mild dependence on the quark mass. In
Ref. [14] a value Rq ¼ $0:38ð12Þ has been reported mak-
ing use of nf ¼ 2Wilson fermions: the agreement, even if
within quite large errors, is encouraging if we consider the
completely different fermion discretization. Instead, as is
well-known, the curvature changes significantly if we
change the number of flavors; for instance for nf ¼ 4
QCD one obtains Rq ¼ $0:792ð10Þ [6,12].

Our determinations of Rq and Riso are clearly affected by
the systematic error related to the choice of the two-loop
expression for !L, anyway such error disappears if we
consider the ratio

Rq-iso ¼
Rq $ Riso

Rq
¼ aq $ aiso

aq
¼ 0:098ð26Þ; (13)

which we consider as our final estimate for the difference
in the curvature of the critical line between the theory at

finite baryon density and the theory at finite isospin density.
In order to appreciate the difference, in Fig. 6 we report
the corresponding linear extrapolations to real chemical
potentials.
In previous studies the two curvatures revealed to be

compatible within errors [44,45]. This is also the expecta-
tion in the limit of a large number of colors Nc [46–50]:
indeed the two curvatures are expected to be the same at
the leading order 1=Nc [46] (the curvature itself is expected
to vanish as Nc ! 1). Therefore, we can consider the
deviation that we find as the first evidence for an
Oð1=N2

cÞ difference between the two theories at small
chemical potentials. Rq-iso, being the ratio of an Oð1=N2

cÞ
to an Oð1=NcÞ quantity, is expected to be Oð1=NcÞ: this is
compatible with the fact that it turns out to be of the order
of 10%. It would be interesting to explore how results
change for different values of Nc.

IV. ORDER OF THE PHASE TRANSITION

As already stressed in the Introduction, the nature of the
pseudocritical line at imaginary "q, may be strongly in-
fluenced by the order of the RW endpoint [26–29], i.e., the
point at which the RW line taking place in the high-T
region for Imð"qÞ=T ¼ #=3 meets the analytic continu-

ation of the physical pseudocritical line. If the endpoint is
first order then it is actually a triple point and at least the
part of the pseudocritical line which is closest to the
endpoint is expected to be first order.
In the case of nf ¼ 2, with the same regularization and

temporal size (Nt ¼ 4) used in the present study, it is
known that the RW endpoint is first order, in the low-
mass region, for am< amt1 with amt1 ¼ 0:043ð5Þ [28].
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FIG. 5 (color online). Extrapolation to real quark chemical
potentials of the sixth-order constrained, ratio (4,2) of polyno-
mials and physical ratio fits (only the borders of the 95% CL
band have been reported).
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FIG. 6 (color online). Comparison between the extrapolations
to real quark and isospin chemical potential of the fits linear in
"=ð#TÞ2. Data points (circles) are the results of Monte Carlo
simulations performed directly at real isospin chemical potential.
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Summary & Conclusions (3/3)
Study of the order of the phase transition along the two critical lines:

- non zero quark density: no clear signatures of a first-order transition

- non zero isospin density: evidence of a first-order transition for large enough 
imaginary chemical potentials

µ/⇡T = 0.475i

µ/⇡T = 0.475i

Normalized plaquette distributions at the pseudocritical 
coupling for different spatial lattice sizes

That means that the mass used in the present work, am ¼
0:05, is close to the tricritical value but slightly on the
second-order side, so we do not expect the analytic con-
tinuation of the pseudocritical line to become first order as
we approach the RWendpoint. This is compatible with the
fact that we have not observed signals of metastable be-
havior or double peak distributions along the line; only a
strengthening of the transition can be seen as the RW
endpoint is approached, as a consequence of the closeness
of the tricritical point.

If one conjectures that an imaginary!iso may strengthen
the transition in the same way as an imaginary !q does,
then, since the range available for Imð!isoÞ is larger than
that available for Imð!qÞ, one may expect that a first-order
transition could be manifest at some stage along the pseu-
docritical line at imaginary !iso. Such a conjecture is
well-founded, since simulations at real isospin chemical
potential have shown that indeed the effect of small posi-
tive values of !2

iso is a weakening of the transition [51,52].
In order to explore this possibility, we have reported in

Fig. 7 the plaquette distributions at the pseudocritical
coupling for a few different values (both real and imagi-
nary) of !iso=ð"TÞ. It is evident that for the largest values
of !iso a double peak structure develops, hinting at the
presence of a first- order transition.

In order to confirm that by a finite-size scaling analysis,
we have repeated simulations for the largest value of
Imð!isoÞ, !iso=ð"TÞ ¼ 0:475i, on two other lattice sizes,
L ¼ 12 and L ¼ 20. Both the scaling of distributions and
the scaling of susceptibilities confirm the first-order nature
of the transition for this value of!iso: the well in the double
peak distribution of the plaquette deepens as L increases as
expected (see Fig. 8) and the maxima of the plaquette
susceptibility scale linearly with the spatial volume (see
Fig. 9).

Therefore we conclude that, for the present discretiza-
tion and value of the quark mass, the transition is surely
first order at !iso=ð"TÞ ¼ 0:475i and there is possibly a

critical point along the line at some smaller value of
Imð!isoÞ. Such nontrivial behavior resembles what hap-
pens for quark chemical potentials [26–29] and may have
consequences on the general structure of the QCD phase
diagram which should be further investigated in the future.

V. CONCLUSIONS

In this paper we have considered QCD with two degen-
erate flavors of bare mass am ¼ 0:05, corresponding to a
pion massm" $ 400 MeV, on a 163 % 4 lattice, at nonzero
quark or isospin density.
Our investigation developed along three main lines:
(i) localization of the pseudocritical line in the

temperature-chemical potential plane, for the two
cases of quark and isospin density;

(ii) comparison of the curvatures of the two critical lines
at the point of zero chemical potential;

(iii) study of the order of the phase transition along the
two critical lines.
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FIG. 7 (color online). Normalized plaquette distributions at the
pseudocritical coupling for different values of the isospin chemi-
cal potential.
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FIG. 8 (color online). Normalized plaquette distributions at the
pseudocritical coupling for different spatial lattice sizes and
!iso=ð"TÞ ¼ 0:475i.
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FIG. 9 (color online). Maxima of the plaquette susceptibility
as a function of the spatial volume for !iso=ð"TÞ ¼ 0:475i.
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That means that the mass used in the present work, am ¼
0:05, is close to the tricritical value but slightly on the
second-order side, so we do not expect the analytic con-
tinuation of the pseudocritical line to become first order as
we approach the RWendpoint. This is compatible with the
fact that we have not observed signals of metastable be-
havior or double peak distributions along the line; only a
strengthening of the transition can be seen as the RW
endpoint is approached, as a consequence of the closeness
of the tricritical point.

If one conjectures that an imaginary!iso may strengthen
the transition in the same way as an imaginary !q does,
then, since the range available for Imð!isoÞ is larger than
that available for Imð!qÞ, one may expect that a first-order
transition could be manifest at some stage along the pseu-
docritical line at imaginary !iso. Such a conjecture is
well-founded, since simulations at real isospin chemical
potential have shown that indeed the effect of small posi-
tive values of !2

iso is a weakening of the transition [51,52].
In order to explore this possibility, we have reported in

Fig. 7 the plaquette distributions at the pseudocritical
coupling for a few different values (both real and imagi-
nary) of !iso=ð"TÞ. It is evident that for the largest values
of !iso a double peak structure develops, hinting at the
presence of a first- order transition.

In order to confirm that by a finite-size scaling analysis,
we have repeated simulations for the largest value of
Imð!isoÞ, !iso=ð"TÞ ¼ 0:475i, on two other lattice sizes,
L ¼ 12 and L ¼ 20. Both the scaling of distributions and
the scaling of susceptibilities confirm the first-order nature
of the transition for this value of!iso: the well in the double
peak distribution of the plaquette deepens as L increases as
expected (see Fig. 8) and the maxima of the plaquette
susceptibility scale linearly with the spatial volume (see
Fig. 9).

Therefore we conclude that, for the present discretiza-
tion and value of the quark mass, the transition is surely
first order at !iso=ð"TÞ ¼ 0:475i and there is possibly a

critical point along the line at some smaller value of
Imð!isoÞ. Such nontrivial behavior resembles what hap-
pens for quark chemical potentials [26–29] and may have
consequences on the general structure of the QCD phase
diagram which should be further investigated in the future.

V. CONCLUSIONS

In this paper we have considered QCD with two degen-
erate flavors of bare mass am ¼ 0:05, corresponding to a
pion massm" $ 400 MeV, on a 163 % 4 lattice, at nonzero
quark or isospin density.
Our investigation developed along three main lines:
(i) localization of the pseudocritical line in the

temperature-chemical potential plane, for the two
cases of quark and isospin density;

(ii) comparison of the curvatures of the two critical lines
at the point of zero chemical potential;

(iii) study of the order of the phase transition along the
two critical lines.
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FIG. 9 (color online). Maxima of the plaquette susceptibility
as a function of the spatial volume for !iso=ð"TÞ ¼ 0:475i.
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Maxima of the plaquette susceptibility scale linearly with the 
spatial volume

µ/⇡T = 0.475i
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