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Q The first-principle nonperturbative approach of discretizing QCD on a space-time
lattice and performing numerical Monte Carlo simulations is plagued, at nonzero
quark chemical potential, by the well-known sign problem: the fermionic
determinant is complex and the Monte Carlo sampling becomes unfeasible.

Q@ Analytic continuation amongst the possible alternatives to solve (approximately) the
sign problem:

. . . . e o Alford-Kapustin-Wilczek (1999)
» imaginary chemical potential [t — 7[L1\N =» positive measure

» interpolation of the results at imaginary chemical potential
» analytic continuation: Linvf — —TL

Lombardo (2000)
deForcrand-Philipsen (2003)
D’Elia-Lombardo (2003)

» limitations due to ambiguity in the interpolation and |

nonanalyticities and periodicity, we expect reliable estimation Roberge-Weiss (1986)
for Re(p)/T <1




In previous works (Cea-Cosmai-D’Elia-Papa (2007,2008), Cea-Cosmai-D’Elia-Manneschi-Papa (2009))
we have studied the
analytic continuation of the pseudocritical line in the case of:

chemical potentials available

Q@ sSU(2) with ne=8 staggered fermions and finite quark density direct simulations at real J
Q@ SU(3) with ns=8 staggered fermions and finite isospin density T

it was found that the nonlinear terms in the dependence of Bcon p? in
general cannot be neglected and that the extrapolation to real p may be
wrong otherwise.

Q SU(3) with ns=4 staggered fermions and finite quark density

» deviations in the pseudocritical line from
the linear behavior in p? for larger
absolute values of p? were clearly seen

SN3.._ "physical"

st constrained N a0 42 » several possible extrapolations to real p up to
N u/7=0.6
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Cea-Cosmai-D’Elia-Papa (2010)




for fermion fields

Zq/iso (Ta “’) —

In the present study we consider two-flavor QCD in presence of a quark
or an isospin chemical potential in the standard staggered discretization

DU e °% (det M[p]) (det M-

1)) @

Our purposes:

chemical potential;

Q@ nature of the transition as a function of the isospin chemical potential

Q@ analytic continuation of the critical line, T,. () from imaginary to real p in the
case of a finite LLis, , where simulations are available both for imaginary and
real Uiso . Apply analytic continuation to the case of a finite Ltq, also on the basis
of what learned in the case of a finite Miso ;

Q comparison between the two theories at finite (i or i, quantifying systematic
differences for quantities like the curvature of the pseudocritical line at zero




Numerical simulations

Q@ 16°x4 lattice (apart from some special cases where we varied spatial size to
investigate the critical behavior);

Q bare quark mass am=0.05 corresponding to my; ~ 400 MeV;

@ Rational Hybrid Monte Carlo (RHMC) algorithm, properly modified for the inclusion
of quark/isospin chemical potential;

Q@ typical statistics 10k trajectories of 1 Molecular Dynamics unit for each run, 100k
trajectories for 4-5 P values around the pseudocritical point, for each p2, in
order to correctly sample the critical behavior at the transition;

@ the pseudocritical B(p?) has been determined as the value for which the
susceptibility of the (real part of the) Polyakov loop exhibits a peak. We have
verified that the determinations are consistent for other observables.
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TABLE I.  Summary of the values of B.(u?) for finite isospin
SU(3) with ny = 2 on the 16% X 4 lattice with fermionic mass
am = 0.05.

w/(7T) Be
0.475i 5.41670(31)
0.4625i 5.40948(40)
0.450i 5.40429(51)
0.435i 5.39780(59)
0.4175i 5.39012(49)
0.400: 5.38353(44)
0.375i 5.37588(61)
0.350i 5.36799(62)
0.327i 5.36239(64)
0.300i 5.35570(50)
0.260i 5.34820(47)
0.230i 5.3425(10)
0.200i 5.33800(52)
0.165i 5.33304(85)
0.120i 5.3289(12)
0. 5.32371(86)
0.050 5.3199(24)
0.100 5.3189(22)
0.150 5.31486(82)
0.200 53091(13)
0.250 5.3022(28)
0.300 5.2928(15)
0.350 5.2788(15)
0.400 5.2657(18)
0.425 5.26079(94)
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| Interpolating (3. (u?)

ratio of polynomials

: ag + a1(pn/(7T))* + az(pn/(7wT))* 4+ as(p/(7T))°

BC(Nz) —

_ ! = Fit to all data requires
| at least a ratio (4,2)

= Fit to all data with
(u/mT)* > —0.375°
linear (in p2) fit %

i.e. non linear corrections
more important for
imaginary values of p than
for real ones (contrary to
our previous studies)

1+ as(p/(7T))?

5.3

5.25

54

—0.3752

|
___ratio (4,2) fit | |
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5.4

5.35

53

5.25

ratio (4,2) fit
to all data

® lattice 163 x4

Isospin chemical
potential

-0.2

TABLE II.

-0.15 -0.1 -0.05

0 005 01 015 0.2

(W, /T’

_Analyfic continuation of the ratio (4,2) interpolation

Data at p?<0 are precise
enough to be sensitive to
terms beyond the O(u?)

Best interpolation using the ratio
of polynomials O(pu4)/0O(p?)

x?/d.of. = 0.49

(4 parameters)

Parameters of the fits to the pseudocritical couplings in finite isospin SU(3) with n; =2 on a 163 X 4 lattice with

2

fermionic mass am = 0.05, according to the fit function B, (u?) = (ay + a;(u/(7T))*> + ay(w/(7T))* + as(u/(7wT))®)/(1 +
as(u/(7T))?). Blank columns stand for terms not included in the fit. The asterisk denotes a constrained parameter. Fits are performed
in the interval [u/(7T))2., i/ (7T))%ax]; the last two columns give the value of (u/(7T))

min, max *

,. ag ai a as Ay x*/d.o.f. (u/ (7)) e/ (7T))max
1 5.32326(62) 16.755(10) —1.072(26) 3.2143(19) 0.60 —0.4752 0.4252
5.32385(54) —0.3597(60) 0.96 —0.3752 0.4252
5.31940(76) —0.4192(47) 18.3 —0.4752 0
5.3232(11) —0.368(12) 0.59 —0.3752 0
5.3255(14) —0.286(25) 0.511(94) 1.85 —0.4752 0
5.3235(21) —0.374(68) —0.36(63) —2.4(1.7) 0.43 —0.4752 0
5.3232% —(0.368" —0.253(91) —2.01(44) 0.62 —0.4752 0 v b’
5.32403(94) 14.602(14) —0.844(44) 2.8066(25) 0.49 —0.4752 0




“Physical” fit l

write the interpolating function in “physical”

‘ v =p/(wT), T/T.(0) '

a?(Bc(1?))|2—100p = a*(Bc(0))]2-100p
9 14+ Ax + B x?
1+ Cx

units:

[:rc(o)]2 1+ Az + Ba?
T.(pn)| 1+Cx

T 1
 (Nsa(B))

- implicit relation between B. and p?
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5.4 - l.gtigSlca 1 |
. 3 -
° lattice6 x4 | fit parameters| |
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Extrapolations to real isospin chemical potentials
together with results from simulations at real values

—
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H iSO/(TCT)

Agreement between extrapolations as

p/(7T) < 0.2

long as

Sixth order constrained extrapolation
deviates from the other two extrapolations

Different interpolations that well
reproduce imaginary data, lead to distinct
extrapolations (as we have seen for n¢=4
SU(3))

ratio (4,2) is quite close to the direct
determinations of the pseudocritical

couplings
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Nonzero quark chemical

e

| TABLE III. Summary of the values of 8,(u?) for finite density

SU(3) with ny = 2 on the 16% X 4 lattice with fermionic mass
am = 0.05.

Im(u)/(7T) B

0. 5.32371(86)

0.100 5.3277(12)

0.180 5.33524(71)

0.200 5.33914(83)

0.245 5.34712(75)

0.260 5.35000(81)

0.270 5.35255(91)

0.280 5.35510(59)

0.290 5.35710(70)

0.300 5.35970(21)

0.310 5.36307(62)

0.320 5.36622(37)

0.327 5.36956(63)

1/3 5.37067(75)

5.38

5.36

~ 5.34

5.32

--- fit ratio (4,2) 7
® lattice 16'x4

Quark chemical .
potential

(W/(rT))”

in the interval [(u/(7T))?

min’

2

min*

TABLE IV. Parameters of the fits to the pseudocritical couplings in finite density SU(3) with ny = 2 on a 16% X 4 lattice with
fermionic mass am = 0.05, according to the fit function B.(u?) = (ay + a;(u/(7wT))* + ar(w/(7T))* + as(u/(wT))) /(1 +
a,(u/(7rT))?). Blank columns stand for terms not included in the fit. The asterisk denotes a constrained parameter. Fits are performed
0]; the last column gives the value of (u/(7T))

i i
T LT '.__.._.__'L-_..-H-_hw'-g.ul.l P T e e — T o

a a; a, as ay x>/d.o.f. (,u,/(77'T))r2]rlin
5.32189(78) —0.4262(90) 287 —1/32
5.32283(83) —0.410(10) 0.63 —0.310?
5.3242(13) —0.314(44) 0.92(35) 0.85 — 1/32
5.3226(12) —0.446(86) —1.7(1.7) —14.4(9.7) 1.41 —1/32
5.30083" —0.410* —0.76(13) —87(5.4) 0.65 —1/32
5.32394(98) 25.736(24) —1.05(61) 4.9002(45) 0.60 — 1/32
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"Physical” fit at nonzero quark chemical potential

[TC(O)

Te(p)

;

B 1+ Ax + Bx?
1+Cx

a?(Be(1t?))]2—100p = a*(Bc(0))]2—100p
9 1+ Ax + Bx?
1+Cx

5.38

5.36 -
< 5341

532

ratio

_ "'physical" fit

® lattice 163x4

potential

Quark chemical

5.3

-0.1

-0.05 0 0.05

(W/(xT))

fit Earamefers l

B.(0) =5.32373(90) , A = 8.140(32)
B =6.59(26) , C = 7.201(35)

x?/d.o.f. = 0.51

extrapolation to real chemical potentials
down to T=0 (but there are systematic
effects!)

pe(T = 0) = \/STC(O) — 3.284(65)7.(0)

2.73(58)T.(0)
ni=2 Wilson fermion (Nagata-Nakamura 2011)




Extrapolations to real quark chemical potentials '

b

Be

532 [
53 [
528 [

5.26 [

5.24

" [— ratio (4,2)
[ | --- "'physical" ratio
L |-—-- sixth order constrained

Be

5.32

528
526

524 -

53k

isospin

[ | — ratio (4,2)
[ |--- "physical" ratio

sixth order constrained

Comparison of different extrapolations: l

u/(7wT) < 0.1 OK

p/(7wT) > 0.1

Sixth order constrained polynomial
deviates from the other two curves

@ Using analysis at finite isospin one could
argue that “ratio (4,2)" is preferred.

& HOWEVER one cannot exclude possible
systematic differences between QCD at
finite quark and isospin chemical
potentials.
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THE CURVATURES OF THE CRITICAL LINES

Curvature of the pseudocritical line at p=0 '

5.32

Common fit to all the pseudocritical couplings
at imaginary (and real, when available)
chemical potentials, including as many data

N
(%)

5.28 |- points as compatible with a reasonable
St [ , chisquare (*):
526 to real chemical 0 0
! . p i
B poi'eni'lals /Bc(ll'qa ll'iso) — ,Bc(O) + aq (ﬁ) + Qjiso (ﬂ)
5.24 :— — isospin
- | --- quark N
[ | ® simulations at real isospin N
522 | K
il N N T TN N T TN N T N WO T TN M AN TN WY TN N N SO N W M
0 0.1 0.2 0.3 0.4 0.5

W(rT) , W, /(nT) aqg = — 0.3997(87) , ajso = —0.3606(67)

5.32370(57) , x?/d.o.f. =0.93.

(*) the mixed terms is absent, for two degenerate flavors the 'rh'eor'y
is even under reflection of pqand His, Separately (DElia-Sanfilippo

- RS = me LA A
e g e e — e - — e r———— ————— - ——— W

2009)




The curvatures in terms of dimensionless quantities

TC(qu NiSO) ( Hq )2 (Ni80)2
=14+ Ry | — Riso | ——
T.(0) T M qol i + T

Qg /iso — Qq/iso
a/ 2,30(0)3 IBL (/30(0)7 mCI) q/

a |attice spacing

990  |attice beta-function

(2-loop)

BL = a

the expectation is: Rq — Iljgo (at the leading order 1/Nc)

Rq,iso ~ Nf/Nc

R, = —0.515(11) Riso = —0.465(9)

FINP: _0°500(34) deForcrand-Philipsen (2003) am=0.025 —0.426(19) Kogut-Sinclair (2004) m=0.05 83x4 R algorithm
I —0.38(12) Nagata-Nakamura (2011) - Wilson fermions
.; —0.792(10) 4 flavors (D’Elia-Lombardo 2004, Cea-Cosmai-D’Elia-Papa 2010) = the curvature grows with ng
- (ratio: to avoid the _ R. e '
; systematic error related Ry _iso = o RRISO = Ja " fee 0.098(26) ~ 10%
~ to the choice of the two- ! ! ~ 0(1 / Nc)
. loop expression for BL)

first lattice evidence of the O(1/Nc?)

Rq — Riso ~ O ( 1 / N 2) difference between the two thories at small
C

chemical potentials »» D.Toublan (2005) :




ORDER OF THE PHASE TRANSITION AT IMAGINARY

CHEMICAL POTENTIALS

small chemical potential.

far from the endpoint.

| @ The phase structure at finite T and imaginary chemical potential may be important of its
own and teach us something about the nonperturbative properties of QCD also at zero and

| @ The phase transition at the Roberge-Weiss endpoint could in principle have influence also

IMAGINARY QUARK CHEMICAL POTENTIAL

15t order

ls'r Ol"d er /

2"d order

For Ni=2 the RW transition (pmm/nT=1/3):

» first order for small and high quark masses

» second order for intermediate quark masses
Bonati-Cossu-D’Elia-Sanfilippo (2011) ‘

In the present study am=0.05 = 2nd order RW |}

for quark chemical potential

.

see what happens for the isospin chemical
potential, where the available range of
imaginary values is larger




ORDER OF THE PHASE TRANSITION

Imaginary isospin chemical potential may strengthen the transition as an imaginary quark
potential does: a first-order transition could be manifest along the pseudocritical line
| (even for our quark mass value m=0.05).

150 |0 W@T)=0425 | | | | ~
e—e W/(nT) = 0.300
-a W(nT) =0.165 i
== W/(nT) =0.350 i
v W(rT) =0.450i
v— W(rnT)=04751

3
16° X 4
ISOSPIN CHEMICAL POTENTIAL
m = 0.05
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Normalized plaquette distribution at the
pseudocritical coupling for different values of the
isospin chemical potential




e | piso/(7T) = 0.475¢ am = 0.05

1st order ,
phase transition &’

100f

03 el -

0.1F PR _|
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| | | | | | |
0 2000 4000 6000 8000

L3

I I
0.525 0.53 0.535

| 'd' Normalized plaquette distributions at the

pseudocritical coupling for different spatial
lattice sizes

Maxima of the plaquette susceptibility scale
linearly with the spatial volume

4
]
3
L]
i
|

We argue that (for ni=2 staggered fermions of mass am=0.05) the transition is first order at Hiso/nT=0.475i
and there is possibly a critical point along the line at some smaller value of Hiso/nT.

P -

Such non-trivial behavior resembles what happens for quark chemical potentials and may have consequences on
the general structure of the QCD phase diagram (deserves further investigations).

D’Elia-Sanfilippo (2009) deForcrand-Philipsen (2010) Bonati-Cossu-D’Elia-Sanfilippo (2011) Bonati-deForcrand-D’Elia-Philipsen-Sanfilippo (2011)
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Summary & Conclusions (1/3)
Q Localization of the pseudocritical line in the temperature-chemical potential plane, ““
for the two cases of quark and isospin density by means of analytic continuation:

¢

- deviations from the linear behavior in p? of the critical lines clearly seen for
H2<0 are nicely described by several analytic functions; however, the
extrapolations to positive p? overlap, within errors, only as long as

Piso/(wT) ~ 0.2 Lo/ (wT) ~ 0.1

5.32 B 532

53} 53 L

5.28 B 5.28 i

< | < |

526 5.26

5.24:— == sixth order constrained 5.24 |- [— ratio 4,2
| | — ratio (4,2) [ |--- "physical" ratio
[ |--- "physical" ratio v ] L |---- sixth order constrained } \ .

S22 YN 522 Lo ]
L1 L L L I L L L L I L L L L I L L L L I L L \-I \| - : 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 ‘\I 1 |\' ||||| :
0 0.1 0.2 0.3 0.4 0.5 '

H iso/(nT)

preference for extrapolations based on Padé approximants
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Summary & Conclusions (2/3)

Be

5.32
531
528 RN

- Linear extrapolations "\
5.26 [

524

522

to real chemical
potentials

— isospin
--- quark

® simulations at real isospin

0.1 0.2 0.3 0.4

W(@T), p /(nT)

| Q@ We have performed a careful determination of the curvatures of the two critical
lines at zero chemical potential

- Riso |
= 0.098(26) ~ O(1/N,) |

R,

First evidence for an

Ry —

Riso = O(1/N?)

difference between the two theories
at small chemical potentials

» D.Toublan (2005)

It would be interesting to explore how results change for
different values of [V, C
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Summary & Conclusions (3/3):

Q Study of the order of the phase transition along the two critical lines:

- non zero quark density: no clear signatures of a first-order transition

- non zero isospin density: evidence of a first-order transition for large enough
imaginary chemical potentials

0.5 . |

i p/mT = 0.475%

— [.=12
=8l =16
—e | =20
100 =

10

4 /7T = 0.475i

I ! I
0.525 0.53 0.535

Normalized plaquette distributions at the pseudocritical
coupling for different spatial lattice sizes

L l L l L l L l
v 2000 4000 6000 8000

Maxima of the plaquette susceptibility scale linearly with the
spatial volume
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