Monte Carlo simulation of abelian Gauge-Higgs lattice models using dual representations

Alexander Schmidt and Christof Gattringer

University of Graz

Institute of Physics

June 25, 2012

Alexander Schmidt

Monte Carlo simulation of abelian Gauge-Higgs lattice models using dual representations

What? Why?

What are we doing?

- We rewrite the action of an abelian gauge theory to an alternative representation in terms of **dual variables** i.e., loops and surfaces.
- **2** We do lattice Monte-Carlo simulations for non-vanishing chemical potential using the dual variables.

Why are we doing this?

- **1** The *dual approach* solves the complex action-problem.
- 2 This is the first dual simulation for a system with gauge- and matter fields, i.e., surfaces and loops.
- **3** Improve techniques for simulations with dual variables.

Partition sum Z of the conventional representation

Partition sum Z, Gauge-action S_G and Higgs-action S_H

$$Z = \sum_{\{\phi, U\}} e^{-S_G - S_H} ,$$

$$S_G = -\frac{\beta}{2} \sum_{x} \sum_{\sigma < \tau} \left[U_{x, \sigma \tau} + U_{x, \sigma \tau}^{\star} \right] ,$$

$$S_H = -\kappa \sum_{x, \nu} \left[e^{\mu \delta_{\nu, 4}} \phi_x^{\star} U_{x, \nu} \phi_{x + \widehat{\nu}} + e^{-\mu \delta_{\nu, 4}} \phi_x^{\star} U_{x - \widehat{\nu}, \nu}^{\star} \phi_{x - \widehat{\nu}} \right]$$

In this example: Gauge fields $U_{x,\nu}$ and Higgs fields $\phi_x \in Z_3$

$$\phi_{\mathsf{x}} = e^{i s_{\mathsf{x}} 2 \pi / 3} , \quad U_{\mathsf{x},\sigma} = e^{i a_{\mathsf{x},\sigma} 2 \pi / 3} , \quad s_{\mathsf{x}}, a_{\mathsf{x},\sigma} \in \{-1,0,1\} \quad .$$

Other abelian groups can be treated in a similiar manner.

Alexander Schmidt

Monte Carlo simulation of abelian Gauge-Higgs lattice models using dual representations

We will make use of the identities l_1 and l_2

Identity I_1

$$\exp\left(\kappa e^{i\frac{2\pi}{3}s} + \kappa e^{-i\frac{2\pi}{3}s}\right) = C_{\kappa} \sum_{k=-1}^{1} B_{\kappa}^{|k|} e^{i\frac{2\pi}{3}sk} , \quad s = -1, 0, 1 ,$$
$$C_{\kappa} = \frac{e^{2\kappa} + 2e^{-\kappa}}{3} , \qquad B_{\kappa} = \frac{e^{2\kappa} - e^{-\kappa}}{e^{2\kappa} + 2e^{-\kappa}} .$$

Identity I_2

$$\exp\left(\kappa e^{\mu} e^{i\frac{2\pi}{3}s} + \kappa e^{-\mu} e^{-i\frac{2\pi}{3}s}\right) = \sum_{k=-1}^{1} M_{k} e^{i\frac{2\pi}{3}sk} , \quad s = -1, 0, 1 ,$$
$$M_{k} = \frac{1}{3} \left[e^{2\kappa \cosh(\mu)} + 2e^{-\kappa \cosh(\mu)} \cos\left(\sqrt{3}\kappa \sinh(\mu) - k\frac{2\pi}{3}\right) \right] .$$

(character expansion)

To give an idea how we are using l_1 and l_2

The Boltzmann factor e^{-S} with

$$S_{H} = -\kappa \sum_{x,\nu} \left[e^{\mu \delta_{\nu,4}} \phi_x^{\star} U_{x,\nu} \phi_{x+\widehat{\nu}} + e^{-\mu \delta_{\nu,4}} \phi_x^{\star} U_{x-\widehat{\nu},\nu}^{\star} \phi_{x-\widehat{\nu}} \right]$$

Is written as a product of local terms such as

$$\begin{split} \prod_{x} \exp\left(\kappa \, e^{\mu} e^{i\frac{2\pi}{3}[s_{x+\hat{4}}-s_{x}+a_{x,4}]} + \kappa \, e^{-\mu} e^{-i\frac{2\pi}{3}[s_{x+\hat{4}}-s_{x}+a_{x,4}]}\right) \\ = \prod_{x} M_{k_{x,4}} \, e^{i\frac{2\pi}{3}\left[s_{x+\hat{4}}-s_{x}+a_{x,4}\right]k_{x,4}} \,, \end{split}$$

which we expand using I_1 and I_2 .

A similiar expansion is used for the gauge part of the action.

The full dual partition sum

$$Z = \sum_{\{p\}} \sum_{\{k\}} C_P[p,k] C_F[k] W_P[p] W_F[k] .$$

 \mathcal{C} ... constraints \mathcal{W} ... weights (non-negative)

New dual degrees of freedom

- Plaquette occupation numbers $p_{x,\sigma\tau} \in \{-1,0,1\}$
- Flux occupation numbers $k_{x,\nu} \in \{-1,0,1\}$

Structure of the constraints.

Some admissible low-lying configurations:

The two constraints:

- $C_F[k]$: At each site the total flux from the k-variables has to be a multiple of 3.
- $C_P[p, k]$: For each link the combined flux of k-variables and plaquette occupation numbers p also has to be a multiple of 3.

Cube update + surface update (Gauge-field)

Two possible cube updates respecting the dual constraints (4 embeddings)

+ Surface update

Change plaquettes on coordinate planes by ± 1 . This however updates only a finite volume correction.

Plaquette update (Gauge-field + Higgs-field)

Here we combine **link and plaquette updates** respecting the dual constraints. (6 embeddings)

Observables we look at

For the gauge sector we study the plaquette expecation value $\langle U\rangle$ and the corresponding susceptibility χ_U

$$\langle U \rangle \; = \; rac{1}{6 N_s^3 N_t} \, rac{\partial}{\partial eta} \, \ln Z \qquad , \qquad \chi_U \; = \; rac{1}{6 N_s^3 N_t} \, rac{\partial^2}{\partial eta^2} \, \ln Z \; ,$$

while in the Higgs-sector we additionally look at the particle number density $\langle n\rangle$ and its susceptibility χ_n

$$n = \frac{1}{N_s^3 N_t} \frac{\partial}{\partial \mu} \ln Z \quad , \quad \chi_n = \frac{1}{N_s^3 N_t} \frac{\partial^2}{\partial \mu^2} \ln Z .$$

Perform the derivatives in the dual representation \Rightarrow Observables are related to first and second moments of the dual variables.

Comparison for pure gauge-theory at $\kappa = 0$

- System undergoes a first order phase transition.
- Conventional simulation and flux-simulation results perfectly agree.

Comparison of the full simulation at $\kappa \neq 0$

- 1st order transition persists.
- Conventional simulation and flux-simulation results again perfectly agree.

Density driven transition at strong coupling

Narrow 1st order transition separating a dilute and a condensed phase.

Results Finite chemical potential $\mu \neq 0$

3d-illustration of plaquettes and fluxes

 $\mu = 2.7$

A closer look at occupation numbers

Monte Carlo simulation of abelian Gauge-Higgs lattice models using dual representations

Summary and Outlook

Summary

- We can deal with the sign-problem of the Z3-Gauge-Higgs model making use of the dual representation.
- It is possible to perform Monte-Carlo simulations directly in terms of the flux and surface variables.
- Interesting condensation transitions (also at weak coupling).
- Analysis of plaquette and flux occupation numbers reveals interesting interplay of gauge and matter fields in the condensation transitions.

Outlook

- Further studies of the Z3-Gauge-Higgs model.
- Try to develop similiar techniques for non-abelian gauge theories.