Padé approximants and g-2 for the muon

Christopher Aubin, Tom Blum, Maarten Golterman, Santi Peris

Lattice 2012 Cairns, June 24-29, 2012

Contribution from lowest-order hadronic vacuum polarization (HLO)

Blum 2002)

Multi-point Padé approximants:

Write
$$(\Pi(0) - \Pi(Q^2))/Q^2 = \int_{4m_\pi^2}^{\infty} dt \, \frac{\rho(t)}{t(t+Q^2)} \equiv \Phi(Q^2) , \quad \rho(t) \ge 0$$

This integral is a Stieltjes function, analytic everywhere except cut $(-\infty, -4m_{\pi}^2]$.

Theorem: Given P points $(Q_i^2, \Phi(Q_i^2))$ a sequence of PAs can be constructed which converge to $\Phi(Q^2)$ on any closed, bounded region of the complex plane excluding the cut, in the limit $P \to \infty$. (Baker 1969, Barnsley 1973)

Construction:
$$\Phi(Q^2) = \frac{\Psi_0}{1 + \frac{(Q^2 - Q_1^2)\Psi_1}{1 + \frac{(Q^2 - Q_1^2)\Psi_1}{\cdot \cdot \cdot \frac{(Q^2 - Q_{P-2}^2)\Psi_{P-2}}{1 + (Q^2 - Q_{P-1}^2)\Psi_{P-1}}}$$

with Ψ_i related to $\Phi(Q_{j\leq i+1}^2)$ ($\Psi_0 = \Phi(Q_1^2)$, etc.), yields a [[(P-1)/2], [P/2]] PA.

Parametrization and strategy

Furthermore, can prove that (Baker, Barnsley)

$$\Pi(Q^2) = \Pi(0) - Q^2 \left(a_0 + \sum_{n=1}^{[P/2]} \frac{a_n}{b_n + Q^2} \right)$$

with $a_n > 0$ (positive residues) and $b_{[P/2]} > \cdots > b_1 > 4m_\pi^2$ (all poles on cut), $a_0 = 0$ for P even .

Fit this form for P = 2, 3, 4, 5; yields [0, 1], [1, 1], [1, 2], [2, 2] PAs. Compute $a_{\mu}^{\text{HLO}, Q^2 \leq 1} = 4\alpha^2 \int_0^{1 \text{ GeV}^2} dQ^2 f(Q^2) (\Pi(0) - \Pi(Q^2))$ Note: VMD is same as [0, 1] PA with $b_1 = m_{\rho}^2$ fixed; NOT a (valid) PA!

Test on MILC lattices with a = 0.09 fm, $m_{\pi} = 480 \text{ MeV}$

			correlated	uncorrelated		
		interval	$0 < Q^2 \le 0.6 \mathrm{GeV^2}$	interval $0 < Q^2 \le 1 \text{ GeV}^2$		
PA	# parameters	χ^2/dof	$10^{10} a_{\mu}^{\mathrm{HLO},Q^2 \le 1}$	χ^2/dof	$10^{10} a_{\mu}^{\mathrm{HLO},Q^2 \le 1}$	
VMD	2	$5.86/3^{*}$	363(7)	4.37/18	413(8)	
[0,1]	3	11.4/8	338(6)	3.58/17	373(37)	
[1, 1]	4	7.49/7	350(8)	3.36/16	424(116)	
[1, 2]	5	7.49/6	350(8)	3.35/15	443(293)	
$\left[2,2\right]$	6	7.49/5	350(7)	3.35/14	445(432)	

* interval $0 < Q^2 \le 0.35 \text{ GeV}^2$

uncorrelated VMD fit agrees with Aubin and Blum, 2007

- Correlated: VMD bad, clear improvement with addition of parameters
- Difficult to determine 2nd pole, but a_{μ} insensitive to higher poles
- Internal consistency, except uncorr. VMD (unknown systematic error!) and correlated PAs

- uncorrelated fits look better at small Q^2
- also considered MILC lattices with $a=0.06~{
 m fm}$, $~m_{\pi}=220~{
 m MeV}$ similar

 $a_{\mu}^{\mathrm{HLO},Q^{2}\leq1}=572(41)\times10^{-10}\,\text{[1,1] corr. , }a_{\mu}^{\mathrm{HLO},Q^{2}\leq1}=646(8)\times10^{-10}\,\mathrm{VMD}\,\mathrm{uncorr.}$

• not possible to decide which fit is best, based on current data

Integrand of $a_{\mu}^{\rm HLO}/(4\alpha^2)$ compared with data (MILC, $a=0.06~{
m fm}$, $m_{\pi}=220~{
m MeV}$)

⇒ need more data at low Q^2 with smaller errors! In progress...

Conclusions

- New method to parametrize hadronic vacuum polarization; avoid model dependence of vector meson dominance.
 Based on representation of vacuum polarization in terms of Stieltjes function.
- Tested on two examples of numerical data for vacuum polarization.
 Padé approximant fits can lead to larger statistical errors, but avoid unknown systematic error associated with VMD.
- Method looks promising, but data at lower momenta and smaller errors are indispensible (difference between $a_{\mu}(VMD)$ and $a_{\mu}([1,1])$ is about 17%).
- Note: long chiral extrapolation also need data with small pion mass in order to control this source of error (well below 300 MeV).

Backup slide 1: comparison with polynomial fits

	Poly 3		Poly 4		PA [1,1]		PA [1,2]	
# points	$\chi^2/{ m dof}$	$a^{(1)}_{\mu}$						
16	9.6/12	543	9.5/11	483	9.7/12	564	9.7/11	565
18	11.4/14	526	10.5/13	596	11.2/14	541	11.5/13	561
20	13.1/16	536	13.1/15	535	13.9/16	572	13.9/15	572
22	16.5/18	541	15.9/17	513	18.5/18	566	18.5/17	566
24	16.6/20	537	16.4/19	521	19.4/20	583	19.4/19	583
26	30.7/22	505	23.6/21	580	26.8/22	557	26.7/21	560

- Poly 3, PA [1,1] and PA [1,2] correlated fits all good, not so Poly 4.
- Stability from PA [1,1] to PA [1,2], not from Poly 3 to Poly 4.
- Note: PA's converge everywhere except on cut; polynomials only within radius of convergence.

Backup slide 2: chiral extrapolation

Assume VMD, and approximate $\Pi(Q^2)_{subtr} = g_\rho^2 Q^2/m_\rho^2$ (continuum) $\Pi(Q^2)_{subtr} = g_V^2 Q^2/m_V^2$ (lattice)

Define
$$I_H = \alpha^2 \int_0^\infty \frac{dQ^2}{Q^2} w \left((Q^2/m_{\mu}^2) (H_{phys}^2/H_{latt}^2) \right) \Pi(Q^2)_{subtr}$$

(Feng et al. 2011)

Then
$$I_H = \left(\frac{H_{latt}}{H_{phys}}\right)^2 \frac{g_V^2}{g_\rho^2} \frac{m_\rho^2}{m_V^2} I_{model}$$
 hence choose $H_{latt} = m_V/g_V$

Whatever choice: model dependent! 1^{st} PA pole not equal to m_V^2 Cannot avoid small pion masses (much smaller than 300 MeV)