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CM Analysis

@ Require a basis of operators: {x;}; ¢ € [1, N]
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CM Analysis

@ Require a basis of operators: {x;}; ¢ € [1, N]
@ Calculate set of cross-correlation functions
Gij(t,5) =) _ 6iﬁ'f<Q!Xi(w)x}(0)IQ>
z
_ —EM ﬁ)t

Z ZQ(@Z;‘*@

a=0
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CM Analysis

@ Require a basis of operators: {x;}; ¢ € [1, N]
@ Calculate set of cross-correlation functions
Gij(t,5) =) _ 6iﬁ'£<QIXi(w)X}(0)IQ>
z
_ —EM ﬁ)t

Z ZQ@Z;‘*@

e where Z¢, Zj‘?‘T are the couplings of sink operator (x;) and source

operator (X;r) for the state «
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o Desire — N linearly independent sink (¢,) and source (¢},) operators
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o Desire — N linearly independent sink (¢,) and source (¢},) operators

o ldeally, we really want these operators to satisfy

5aﬁ z (15)
2E, (D)

@ use our basis of operators to construct these new operators

(297 | Ma,p) =

oL(p) = Zu D)L (7)

- Zvﬂmxi(@
i=1

optimal coupling to state | My, p)
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@ Using the above definitions, it is easy to show that the desired values
for u$', v§* are the components of the eigenvectors for the following
eigenvector equations
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@ Using the above definitions, it is easy to show that the desired values
for uf*, v are the components of the eigenvectors for the following
eigenvector equations

CM Eigenvalue Equation

[G71(t,8) G(t + dt, §) |ijus (B) = X*uS(P) (1a)
vt (PIG(t +dt,p) G (t,9) )is = A% (D) (1b)
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@ Using the above definitions, it is easy to show that the desired values
for uf*, v are the components of the eigenvectors for the following
eigenvector equations

CM Eigenvalue Equation

[G71(t,8) G(t + dt, §) |ijus (B) = X*uS(P) (1a)
vt (PIG(t +dt,p) G (t,9) )is = A% (p) (1b)

v

e Using vi*(p), u(p) we are able to project out the correlation function
for the state | My, p)

Ga(t,p) = vi'(9)Gi; (T, P)us (D)
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Choosing a suitable basis of operators

@ The states of interest to us are m and p mesons

7 17(07)
p: 17(17)
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Choosing a suitable basis of operators
@ The states of interest to us are m and p mesons
T 17(07)
1=(17)
@ Standard local operators

T X1=75, X2=7"5
Pi X1 =% X2 =70

@ We shall use smearing of the fermion source and sink as a method of
increasing our operator basis

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 6 /62



Choosing a suitable basis of operators
@ The states of interest to us are m and p mesons
T 17(07)
1= (17)
@ Standard local operators
T X1=75 X2=7"75
Pi X1 =% X2 =70

@ We shall use smearing of the fermion source and sink as a method of
increasing our operator basis

@ Our basis will comprise standard local operators with some number of
sweeps of smearing

{xi} = {xi}, n number of sweeps of smearing
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@ In this work we use of gauge-invariant Gaussian smearing at both

source and sink

'M. S. Mahbub et al., Phys. Rev. D. 80, 054507 (2009)
2B. J. Menadue et al., Phys. Rev. Lett. 108, 112001 (2012)
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@ In this work we use of gauge-invariant Gaussian smearing at both
source and sink

@ This method has been used in previous studies of excited states!+?

'M. S. Mahbub et al., Phys. Rev. D. 80, 054507 (2009)
2B. J. Menadue et al., Phys. Rev. Lett. 108, 112001 (2012)
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@ In this work we use of gauge-invariant Gaussian smearing at both
source and sink
@ This method has been used in previous studies of excited states!+?

o For further details, refer to paper' below

'M. S. Mahbub et al., Phys. Rev. D. 80, 054507 (2009)
2B. J. Menadue et al., Phys. Rev. Lett. 108, 112001 (2012)
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Ratio and three-point functions

@ Evaluation of form factors on lattice proceeds with the calculation of
three-point correlation functions and then taking a suitable ratio to
isolate the desired terms
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Ratio and three-point functions

@ Evaluation of form factors on lattice proceeds with the calculation of
three-point correlation functions and then taking a suitable ratio to
isolate the desired terms

@ Three point function of cross correlators

gfj(tQ,tl;p N7 Z e T2 Zqzl<Q|Xz(l'2)J'u($1)X]( )1€2)

T1,%2

N—1 e~ Ero (77) t2 o= By (4) 1 o ) T( 7)( | 1(0)] )
_ — Z My, p' |J M, p
a=0 2\/EMO£ EMO‘( /)
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Ratio and three-point functions

@ Evaluation of form factors on lattice proceeds with the calculation of
three-point correlation functions and then taking a suitable ratio to
isolate the desired terms

@ Three point function of cross correlators

gfj(tz,tl;p N7 Z e—zp T2 qul<Q|Xz(l'2)J'u($1)X]( )|Q>

7317732
N e T B D0t ) M [4(0)] M)
= = Zio‘p Z My, p |J M, p
a=0 2\/EMO£ EMoc( /)

@ Crucial thing to note above is that we have source and sink coupling
parameters with different momenta
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@ To project out the three-point correlation function for the state

| Mq ), we will need to ensure we use the relevant set of vf", uf
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@ To project out the three-point correlation function for the state

| Mq ), we will need to ensure we use the relevant set of vf", uf

@ For cross correlator defined above

Gh(ta,t1; ", ) = oft () Gy (o, tas 07, ) (0)
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@ To project out the three-point correlation function for the state

| Mq ), we will need to ensure we use the relevant set of vf", uf

@ For cross correlator defined above
Gh(ta, t1;9",9) = vf (") G5 (t2, tr; P, P)us (D)

@ In this work we use the following ratio of three- and two-point
correlation functions

R ) = ¢ | 9otz P 0)Ga b, 13 7. )
’ ga(t%ﬁ/)ga(t%ﬁ)
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Configuration Details

e For this calculation we are working with the PACS-CS (2+1)-flavour
Full QCD ensembles! made available through the ILDG

'S. Aoki et al., Phys. Rev. D 79, 034503 (2009)
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For this calculation we are working with the PACS-CS (2+1)-flavour
Full QCD ensembles' made available through the ILDG

These are 323 x 64 lattices with 3 = 1.9, corresponding to a physical
lattice spacing of 0.0907(13) fm

Iwasaki gauge action and pre-conditioned Wilson-Clover quark action

There are five light quark-masses resulting in pion masses that range
from 622 MeV through to 156 MeV
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Configuration Details

For this calculation we are working with the PACS-CS (2+1)-flavour
Full QCD ensembles' made available through the ILDG

These are 323 x 64 lattices with 3 = 1.9, corresponding to a physical
lattice spacing of 0.0907(13) fm

Iwasaki gauge action and pre-conditioned Wilson-Clover quark action

There are five light quark-masses resulting in pion masses that range
from 622 MeV through to 156 MeV

@ For our form factor analysis, we will only consider the heaviest quark
mass

'S. Aoki et al., Phys. Rev. D 79, 034503 (2009)
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Calculation Details

@ In this calculation we will use four levels of smearing
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Calculation Details

In this calculation we will use four levels of smearing
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Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ~350 configurations

In CM analysis, we solve the eigenvector equations at tg = 17 with
dt =2
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Calculation Details

In this calculation we will use four levels of smearing
These are: ng, = 16, 35, 100, 200

Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ~350 configurations

In CM analysis, we solve the eigenvector equations at tg = 17 with
dt =2

Were using 4 x 4 Correlation matrix
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Form Factor Analysis

@ The method and notation in this work closely follows that of a
previous study! by the CSSM

'J. N. Hedditch et al., Phys. Rev. D 75, 094504 (2007)
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@ The method and notation in this work closely follows that of a
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@ Our 3-point propagators are calculated using Sequential Source
Techniques where we hold the momentum of the current fixed
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Form Factor Analysis

@ The method and notation in this work closely follows that of a
previous study! by the CSSM

@ Our 3-point propagators are calculated using Sequential Source
Techniques where we hold the momentum of the current fixed

e For specific details, refer to paper' below

'J. N. Hedditch et al., Phys. Rev. D 75, 094504 (2007)
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Vertex Functions

@ Pion:

(m(@") [T =(D)) =
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Vertex Functions

o Pion:
T —/ s — 1 m o 2
(W) 7(5)) = e b 4 Q)
@ Rho:
1
5’ ST p(D,8) ) = —————==2¢(p', ') T" (p, p")es(p, s
(p(p", s)[J*| p(P,5)) RCAVAT (p",s"T" (p, p")ex (p, s)
where
oM (p, p') =
@ 1+ Ga@ T - i) - Ga@erw P
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the following expressions

e Given our kinematics: p = (0,0, 0), p" = (pz, 0, 0), we calculate
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e Given our kinematics: p = (0,0, 0), p" = (pz, 0, 0), we calculate
the following expressions

@ pion

E-mg 0

2\ _ 2\ _
Gol@?) = Fu(Q?) = 2=
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e Given our kinematics: p = (0,0, 0), p" = (pz, 0, 0), we calculate
the following expressions

@ pion
E.m
G 2 =F, 2y _ o VY Im'T B0
c(Q7) (Q7) E o+ m.
@ rho

Ge(QY) = 5 ”7; R
Gr(@?) = Y2 ”R

OOI[\')

1°1 + Ro% + R3%3)

123+ R3?1)

Go(Q*) =m, ‘2’ e (2R — R2% — R3%3)
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pion G Form

Factor - {X1 ,Xl 7X%007X100}
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pion G Form
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pion GC Form Factor - {X1 XX
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pion G Form
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pion G Form
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pion G¢ Form Factor - { x3%,
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rho G¢ Form Factor - {X1 % ,X%OO,Xloo}
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rho G¢ Form Factor - {X1 % ,X%OO,Xloo}
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rho G¢ Form Factor - { x3°
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rho G¢ Form Factor - { x3°
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rho G s Form Factor - {Xl 7X1 ,

X100, 3001
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rho G s Form Factor - {Xl 7X1 ,

X100, 3001
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rho G s Form Factor - {Xz 7X2 ,

X300, 301
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rho G s Form Factor - {Xz 7X2 ,

X300, 301
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rho G Form Factor - { x1% x ¥,

X100, 301
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X100, 301
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rho G Form Factor - { x3%, x5,

X300, 301
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rho G Form Factor - { x3%, x5,

Go

X300, 301
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Excited state form factors

@ Now consider the 1st excited states
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Excited state form factors

@ Now consider the 1st excited states

@ Using the same expressions, where we note that masses and energies
refer to excited state

@ In analysis, now using the correlation functions of the second state
from the variational analysis

@ we have plotted the form factors with the ground state as a
comparison
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™ Ggo
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p*: GC Form Factor - { x{°,
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p*: GC Form Factor - { x3°,

100 200
X3, X3, x3%0}
T
S
t
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p G'ys Form Factor - {X1 7X1 )
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p*: Gy Form Factor - { x3% x3°,

1007 X2OO}
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Charge Radii

o Calculate the charge square radius

0
(%) = =650 Gc(@)lg2o
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Charge Radii

@ Calculate the charge square radius

0
(%) = =650 Gc(@)lg2o

@ Assuming monopole form for low Q2 for G¢(0) = 1

o0 1
GC(Q)_<QT2+1)
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Charge Radii
@ Calculate the charge square radius
<7“2> = —GTQQGC(Q2)|Q2=O

@ Assuming monopole form for low Q2 for G¢(0) = 1

Geo(Q%) = <Qz;+1)
N

@ This gives us the following expression for calculating <r2>
6 1
2
ry=—|=——-—1
) Q> (Gc(Qz) )
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RMS Charge Radii Results

@ Ground States

7t (Fyms) = 0.507 & 0.008 fm

Pt (Frms) = 0.586 % 0.010 fm
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RMS Charge Radii Results

@ Ground States
7 (Trms) = 0.507 £ 0.008 fm

P (Trms) = 0.586 £ 0.010 fm

e 1% Exicited States
7 (Prms) = 0.75 £ 0.12 fm

" i {rpms) = 0.71 £ 0.06 fm
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@ Ground States
7 (Trms) = 0.507 £ 0.008 fm

P (Trms) = 0.586 £ 0.010 fm
e 1% Exicited States

7 (Prms) = 0.75 £ 0.12 fm

p*  (rrms) = 0.71 £ 0.06 fm

@ Can see that these excited states are somewhat larger than the
ground states
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RMS Charge Radii Results

@ Ground States
7 (Trms) = 0.507 £ 0.008 fm

P (Trms) = 0.586 £ 0.010 fm

e 1% Exicited States
7 (Prms) = 0.75 £ 0.12 fm

p*  (rrms) = 0.71 £ 0.06 fm

@ Can see that these excited states are somewhat larger than the
ground states

@ We note that half spatial dimension of our box is 1.45fm
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Conclusions

@ Presented a prescription for taking variational techniques and
applying it to form factor calculation

@ Seen improved extraction of form factors by filtering out excited state
contamination
@ Extracted G¢ for the first excited state of the m and p mesons

o Extracted (r?) for these excited states allowing for comparison with
the ground states
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