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CM Analysis

Require a basis of operators: {χi} ; i ∈ [1, N ]

Calculate set of cross-correlation functions

Gij(t, ~p) =
∑
~x

ei~p·~x〈Ω|χi(x)χ†j(0)|Ω〉

=

N−1∑
α=0

e−EMα (~p) t

2EMα(~p)
Zαi (~p)Zα †j (~p)

where Zαi , Zα †j are the couplings of sink operator (χi) and source

operator (χ†j) for the state α
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Desire → N linearly independent sink (φα) and source (φ†α) operators

Ideally, we really want these operators to satisfy

〈Ω |φβ |Mα, p 〉 =
δαβZα(~p)√

2EMα(~p)

use our basis of operators to construct these new operators

φ†α(~p) =
N∑
i=1

uαi (~p)χ†i (~p)

φα(~p) =

N∑
i=1

vαi (~p)χi(~p)


optimal coupling to state |Mα, p 〉
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Using the above definitions, it is easy to show that the desired values
for uαi , vαi are the components of the eigenvectors for the following
eigenvector equations

CM Eigenvalue Equation

[G−1(t, ~p)G(t+ dt, ~p) ]iju
α
j (~p) = λαuαj (~p) (1a)

vαi (~p)[G(t+ dt, ~p)G−1(t, ~p) ]ij = λαvαi (~p) (1b)

Using vαi (~p), uαj (~p) we are able to project out the correlation function
for the state |Mα, p 〉

Gα(t, ~p) = vαi (~p)Gij(t, ~p)uαj (~p)
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Choosing a suitable basis of operators

The states of interest to us are π and ρ mesons

π : 1+ (0−)

ρ : 1− (1−)

Standard local operators

π : χ1 = γ5, χ2 = γ0γ5

ρ : χ1 = γµ, χ2 = γ0γµ

We shall use smearing of the fermion source and sink as a method of
increasing our operator basis

Our basis will comprise standard local operators with some number of
sweeps of smearing

{χi } → {χni }, n number of sweeps of smearing
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In this work we use of gauge-invariant Gaussian smearing at both
source and sink

This method has been used in previous studies of excited states1,2

For further details, refer to paper1 below
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Ratio and three-point functions

Evaluation of form factors on lattice proceeds with the calculation of
three-point correlation functions and then taking a suitable ratio to
isolate the desired terms

Three point function of cross correlators

Gµij(t2, t1; ~p ′, ~p ) =
∑
~x1,~x2

e−i~p
′·~x2ei~q·~x1〈Ω|χi(x2)Jµ(x1)χ†j(0)|Ω〉

=
N−1∑
α=0

e−EMα (~p ′) t2e−EMα (~q ) t1

2
√
EMα(~p )EMα(~p ′)

Zαi (~p ′)Zα †j (~p )〈Mα, p
′ |Jµ(0)|Mα, p 〉

Crucial thing to note above is that we have source and sink coupling
parameters with different momenta
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To project out the three-point correlation function for the state
|Mα 〉, we will need to ensure we use the relevant set of vαi , uαj

For cross correlator defined above

Gµα(t2, t1; ~p ′, ~p ) = vαi (~p ′)Gµij(t2, t1; ~p ′, ~p )uαj (~p )

In this work we use the following ratio of three- and two-point
correlation functions

Rµα(~p, ~p ′) =

√
Gµα(t2, t1; ~p ′, ~p )Gµα(t2, t1; ~p, ~p ′)

Gα(t2, ~p ′)Gα(t2, ~p )
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Configuration Details

For this calculation we are working with the PACS-CS (2+1)-flavour
Full QCD ensembles1 made available through the ILDG

These are 323 × 64 lattices with β = 1.9, corresponding to a physical
lattice spacing of 0.0907(13) fm

Iwasaki gauge action and pre-conditioned Wilson-Clover quark action

There are five light quark-masses resulting in pion masses that range
from 622 MeV through to 156 MeV

For our form factor analysis, we will only consider the heaviest quark
mass

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 10 / 62
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Calculation Details

In this calculation we will use four levels of smearing

These are: nsm = 16, 35, 100, 200

Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ∼350 configurations

In CM analysis, we solve the eigenvector equations at t0 = 17 with
dt = 2

Were using 4× 4 Correlation matrix

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 11 / 62



Calculation Details

In this calculation we will use four levels of smearing

These are: nsm = 16, 35, 100, 200

Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ∼350 configurations

In CM analysis, we solve the eigenvector equations at t0 = 17 with
dt = 2

Were using 4× 4 Correlation matrix

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 11 / 62



Calculation Details

In this calculation we will use four levels of smearing

These are: nsm = 16, 35, 100, 200

Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ∼350 configurations

In CM analysis, we solve the eigenvector equations at t0 = 17 with
dt = 2

Were using 4× 4 Correlation matrix

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 11 / 62



Calculation Details

In this calculation we will use four levels of smearing

These are: nsm = 16, 35, 100, 200

Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ∼350 configurations

In CM analysis, we solve the eigenvector equations at t0 = 17 with
dt = 2

Were using 4× 4 Correlation matrix

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 11 / 62



Calculation Details

In this calculation we will use four levels of smearing

These are: nsm = 16, 35, 100, 200

Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ∼350 configurations

In CM analysis, we solve the eigenvector equations at t0 = 17 with
dt = 2

Were using 4× 4 Correlation matrix

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 11 / 62



Calculation Details

In this calculation we will use four levels of smearing

These are: nsm = 16, 35, 100, 200

Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ∼350 configurations

In CM analysis, we solve the eigenvector equations at t0 = 17 with
dt = 2

Were using 4× 4 Correlation matrix

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 11 / 62



Calculation Details

In this calculation we will use four levels of smearing

These are: nsm = 16, 35, 100, 200

Quark source is at t = 16

Fixed temporal and periodic spacial boundary conditions

For this mass we have used ∼350 configurations

In CM analysis, we solve the eigenvector equations at t0 = 17 with
dt = 2

Were using 4× 4 Correlation matrix

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 11 / 62



pion -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 12 / 62

20 30 40 50 60
0

1

2

3

4

t

E
HG

eV
L



pion -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 13 / 62

20 30 40 50 60
0

1

2

3

4

t

E
HG

eV
L



pion -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 14 / 62

20 30 40 50 60
0

1

2

3

4

t

E
HG

eV
L



pion -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 15 / 62

20 30 40 50 60
0

1

2

3

4



pion -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 16 / 62

20 30 40 50 60
0

1

2

3

4

t

E
HG

eV
L



pion -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 17 / 62

20 30 40 50 60
0

1

2

3

4

t

E
HG

eV
L



pion -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 18 / 62

20 30 40 50 60
0

1

2

3

4

t

E
HG

eV
L



rho -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 19 / 62

20 25 30 35 40 45
0

1

2

3

4

t

E
HG

eV
L



rho -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 20 / 62

20 25 30 35 40 45
0

1

2

3

4

t

E
HG

eV
L



rho -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 21 / 62

20 25 30 35 40 45
0

1

2

3

4

t

E
HG

eV
L



rho -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 22 / 62

20 25 30 35 40 45
0

1

2

3

4

t

E
HG

eV
L



rho -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 23 / 62

20 25 30 35 40 45
0

1

2

3

4

t

E
HG

eV
L



rho -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 24 / 62

20 25 30 35 40 45
0

1

2

3

4

t

E
HG

eV
L



meson spectrum
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Form Factor Analysis

The method and notation in this work closely follows that of a
previous study1 by the CSSM

Our 3-point propagators are calculated using Sequential Source
Techniques where we hold the momentum of the current fixed

For specific details, refer to paper1 below
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Vertex Functions

Pion:

〈π(~p ′) |Jµ|π(~p) 〉 =
1√

Eπ(~p ′)Eπ(~p )
[p′µ + pµ]Fπ(Q2)

Rho:

〈 ρ(~p ′, s′)|Jµ| ρ(~p, s) 〉 =
1√

Eρ(~p ′)Eρ(~p )
ε′∗σ (p ′, s′)Γσµτ (p, p ′)ετ (p, s)

where

Γσµτ (p, p ′) =

−
{
G1(Q2)gστ [p′µ + pµ] +G2(Q2)[gµτqσ − gµσqτ ]−G3(Q2)qσqτ

[p′µ + pµ]

2M2
ρ

}
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Given our kinematics: ~p = ( 0 , 0 , 0 ), ~p ′ = ( px, 0 , 0 ), we calculate
the following expressions

pion

GC(Q2) = Fπ(Q2) = 2

√
Eπmπ

Eπ +mπ
R 0

rho

GC(Q2) =
2

3

√
Eρmρ

Eρ +mρ
(R1

0
1 +R2

0
2 +R3

0
3)

GM (Q2) =

√
Eρmρ

px
(R1

3
3 +R3

3
1)

GQ(Q2) = mρ

√
Eρmρ

p2
x

(2R1
0

1 −R2
0

2 −R3
0

3)
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pion GC Form Factor -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}
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rho GC Form Factor -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 41 / 62

25 30 35
0.6

0.7

0.8

0.9

1.0

t

G
C



rho GC Form Factor -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 42 / 62

22 24 26 28 30 32
0.80

0.82

0.84

0.86

0.88

0.90

0.92

t

G
C



rho GC Form Factor -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 43 / 62

25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

t

G
C



rho GC Form Factor -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 44 / 62

22 24 26 28 30 32
0.80

0.82

0.84

0.86

0.88

0.90

0.92

t

G
C



rho GM Form Factor -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 45 / 62

20 25 30
0.0

0.5

1.0

1.5

2.0

t

G
M



rho GM Form Factor -
{
χ16

1 , χ
35
1 , χ

100
1 , χ200

1

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 46 / 62

20 25 30
0.0

0.5

1.0

1.5

2.0

t

G
M



rho GM Form Factor -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 47 / 62

20 25 30
0.0

0.5

1.0

1.5

2.0

t

G
M



rho GM Form Factor -
{
χ16

2 , χ
35
2 , χ

100
2 , χ200

2

}

Benjamin Owen (Adelaide Uni) CM methods ... June 13th, 2012 48 / 62

20 25 30
0.0

0.5

1.0

1.5

2.0

t

G
M



rho GQ Form Factor -
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Excited state form factors

Now consider the 1st excited states

Using the same expressions, where we note that masses and energies
refer to excited state

In analysis, now using the correlation functions of the second state
from the variational analysis

we have plotted the form factors with the ground state as a
comparison
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ρ∗: GC Form Factor -
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ρ∗: GM Form Factor -
{
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Charge Radii

Calculate the charge square radius〈
r2
〉

= −6
∂

∂Q2
GC(Q2)|Q2=0

Assuming monopole form for low Q2 for GC(0) = 1

GC(Q2) =

(
1

Q2

Λ + 1

)

This gives us the following expression for calculating
〈
r2
〉

〈
r2
〉

=
6

Q2

(
1

GC(Q2)
− 1

)
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RMS Charge Radii Results

Ground States
π : 〈rrms〉 = 0.507± 0.008 fm

ρ : 〈rrms〉 = 0.586± 0.010 fm

1st Exicited States

π∗ : 〈rrms〉 = 0.75± 0.12 fm

ρ∗ : 〈rrms〉 = 0.71± 0.06 fm

Can see that these excited states are somewhat larger than the
ground states

We note that half spatial dimension of our box is 1.45 fm
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Conclusions

Presented a prescription for taking variational techniques and
applying it to form factor calculation

Seen improved extraction of form factors by filtering out excited state
contamination

Extracted GC for the first excited state of the π and ρ mesons

Extracted
〈
r2
〉

for these excited states allowing for comparison with
the ground states
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