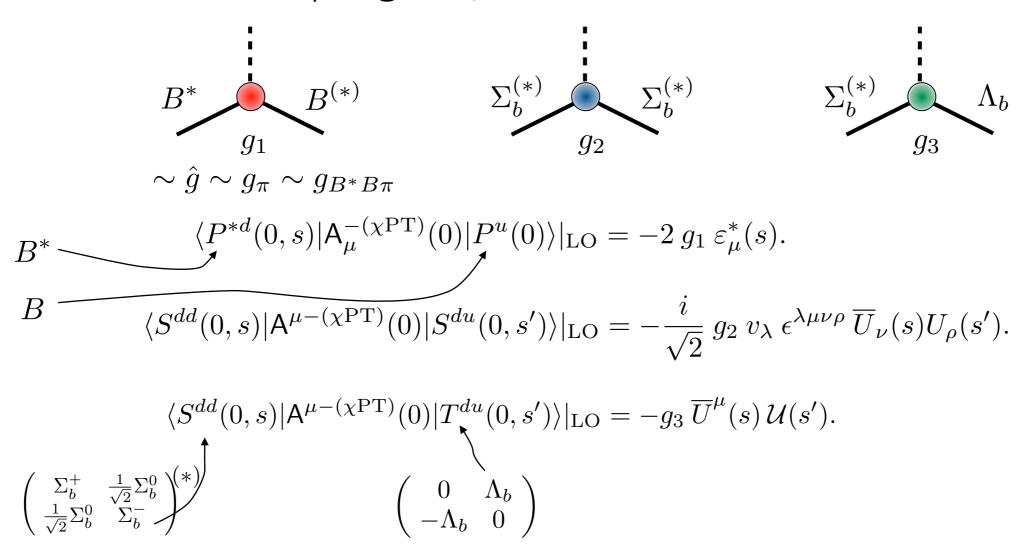


Axial couplings of heavy hadrons


William Detmold

The College of William & Mary / Jefferson Lab

work in collaboration with <u>David Lin</u> & <u>Stefan Meinel</u> [PRL 108 172003, PRD 85 114508, and work in progress]

Chiral dynamics of heavy hadrons

Axial couplings defined in static limit

 Govern leading interactions in heavy-light meson/ baryon chiral Lagrangian [Wise; Burdman & Donoghue; Cheng et al.]

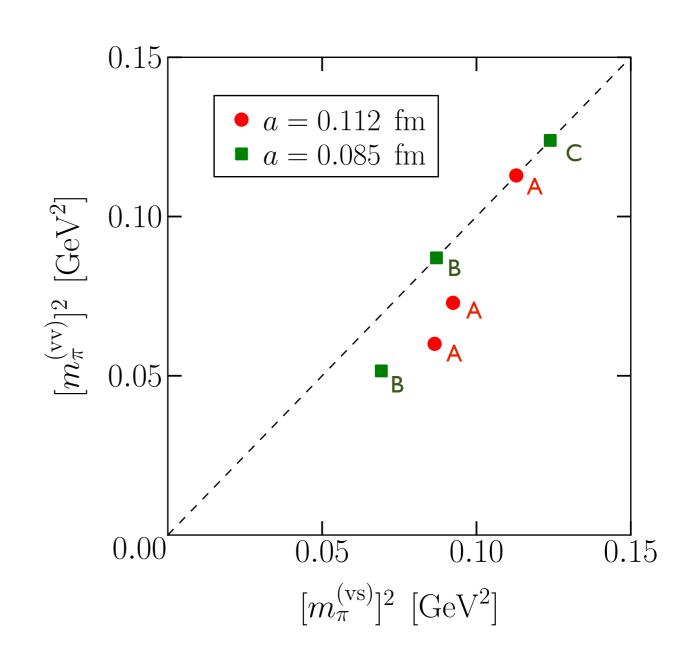
Previous knowledge of gi

- Experimental extraction of g_I from $D^* \to D\pi, \ D^* \to D\gamma$
 - $g_1 = 0.5(?)$ [Arnesen et al.]
- Lattice calculations for g_I

Reference	n_f , action	$[m_{\pi}^{(vv)}]^2 (\text{GeV}^2)$	g_1
De Divitiis <i>et al.</i> , 1998 [14]	0, clover	0.58 - 0.81	$0.42 \pm 0.04 \pm 0.08$
Abada <i>et al.</i> , 2004 [15]	0, clover	0.30 - 0.71	$0.48 \pm 0.03 \pm 0.11$
Negishi $et al., 2007 [16]$	0, clover	0.43 - 0.72	0.517 ± 0.016
Ohki <i>et al.</i> , 2008 [17]	2, clover	0.24 - 1.2	$0.516 \pm 0.005 \pm 0.033 \pm 0.028 \pm 0.028$
Bećirević <i>et al.</i> , 2009 [18]	2, clover	0.16 - 1.2	$0.44 \pm 0.03^{+0.07}_{-0.00}$
Bulava et al., 2010 [19]	2, clover	0.063 - 0.49	0.51 ± 0.02

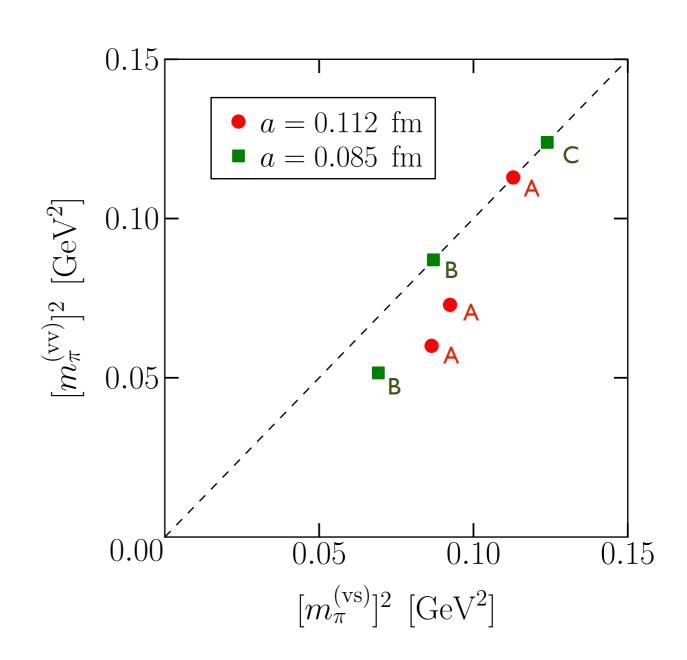
Need fully quantified uncertainties

Current knowledge of g1,2,3


Model estimates for g_{1,2,3} [Cho normalisation]

Reference	Method	g_1	g_2	g_3
Yan et al., 1992 [5]	Nonrelativistic quark model	1	2	$\sqrt{2}$
Colangelo <i>et al.</i> , 1994 [45]	Relativistic quark model	1/3		•••
Bećirević, 1999 [46]	Quark model with Dirac eq.	0.6 ± 0.1		•••
Guralnik $et \ al., 1992 \ [47]$	Skyrme model	• • •	1.6	1.3
Colangelo <i>et al.</i> , 1994 [48]	Sum rules	0.15 - 0.55		•••
Belyaev <i>et al.</i> , 1994 [49]	Sum rules	0.32 ± 0.02		•••
Dosch and Narison, 1995 [50]	Sum rules	0.15 ± 0.03		•••
Colangelo and Fazio, 1997 [53	1] Sum rules	0.09 - 0.44		•••
Pirjol and Yan, 1997 [52]	Sum rules	• • •	$<\sqrt{6-g_3^2}$	$<\sqrt{2}$
Zhu and Dai, 1998 [53]	Sum rules	• • •	$1.56 \pm 0.30 \pm 0.30$	$0.94 \pm 0.06 \pm 0.20$
Cho and Georgi, 1992 [54]	$\mathcal{B}[D^* \to D \pi], \mathcal{B}[D^* \to D \gamma]$	0.34 ± 0.48		•••
Arnesen $et al., 2005 [57]$	$\mathcal{B}[D_{(s)}^* \to D_{(s)}\pi], \mathcal{B}[D_{(s)}^* \to D_{(s)}\gamma], \Gamma[D^*]$	0.51	• • •	• • •
Li et al., 2010 [58]	$\mathrm{d}\Gamma[B o\pi\ell u]$	< 0.87	• • •	•••

- All over the place!
- Reliable calculation needed


Actions and ensembles

- Domain-wall light quarks [RBC/UKQCD]
 - Lattice chiral symmetry
- Static heavy quarks with n_{HYP}=0,1,2,3,5,10 levels of HYP smearing
- Two lattice spacings
 a = 0.085, 0.112 fm
- Six <u>valence</u> quark masses $m_{\pi} = 0.23-0.35$ GeV
- Single $(2.5 \text{ fm})^3 \text{ volume}$

Actions and ensembles

- Domain-wall light quarks [RBC/UKQCD]
 - Lattice chiral symmetry
- Static heavy quarks with n_{HYP}=0,1,2,3,5,10 levels of HYP smearing
- Two lattice spacings
 a = 0.085, 0.112 fm
- Six <u>valence</u> quark masses $m_{\pi} = 0.23-0.35$ GeV
- Single $(2.5 \text{ fm})^3 \text{ volume}$

O(a) improved* axial current:

$$Z_A = \begin{cases} 0.7019(26) & \text{for } a = 0.112 \text{ fm,} \\ 0.7396(17) & \text{for } a = 0.085 \text{ fm.} \end{cases}$$
 [RBC]

Correlation functions

Interpolating operators in static limit

$$P^{i} = \overline{Q}_{a\alpha} (\gamma_{5})_{\alpha\beta} \tilde{q}^{i}_{a\beta}, \qquad S^{ij}_{\mu\alpha} = \epsilon_{abc} (C\gamma_{\mu})_{\beta\gamma} \tilde{q}^{i}_{a\beta} \tilde{q}^{j}_{b\gamma} Q_{c\alpha}, P^{*i}_{\mu} = \overline{Q}_{a\alpha} (\gamma_{\mu})_{\alpha\beta} \tilde{q}^{i}_{a\beta}, \qquad T^{ij}_{\alpha} = \epsilon_{abc} (C\gamma_{5})_{\beta\gamma} \tilde{q}^{i}_{a\beta} \tilde{q}^{j}_{b\gamma} Q_{c\alpha}.$$

Two point and three point correlation functions

$$C[P^{u}P_{u}^{\dagger}](t) = \sum_{\mathbf{x}} \langle P^{u}(\mathbf{x},t) P_{u}^{\dagger}(0) \rangle,$$

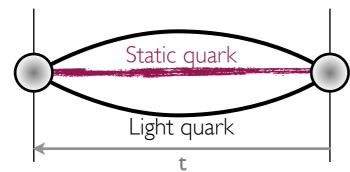
$$C[P^{*d}P_{d}^{*\dagger}]^{\mu\nu}(t) = \sum_{\mathbf{x}} \langle P^{*d}\mu(\mathbf{x},t) P_{d}^{\dagger}(0) \rangle,$$

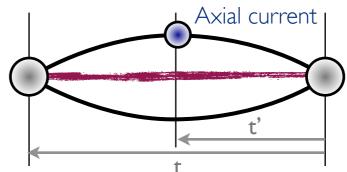
$$C[S^{dd}\overline{S}_{dd}]^{\mu\nu\rho}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S_{\alpha}^{dd}\mu(\mathbf{x},t) \overline{S}_{dd}^{\nu}(0) \rangle,$$

$$C[S^{dd}\overline{S}_{dd}]^{\mu\nu\rho}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S_{\alpha}^{dd}\mu(\mathbf{x},t) \overline{S}_{dd}^{\nu}(0) \rangle,$$

$$C[S^{dd}\overline{S}_{dd}]^{\mu\nu\rho}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S_{\alpha}^{dd}\mu(\mathbf{x},t) \overline{S}_{dd}^{\nu}(0) \rangle,$$

$$C[S^{dd}\overline{S}_{dd}]^{\mu\nu}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S_{\alpha}^{dd}\mu(\mathbf{x},t) \overline{S}_{dd}^{\nu}(0) \rangle,$$


$$C[S^{dd}\overline{S}_{dd}]^{\mu\nu}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S_{\alpha}^{dd}\mu(\mathbf{x},t) \overline{S}_{dd}^{\nu}(0) \rangle,$$

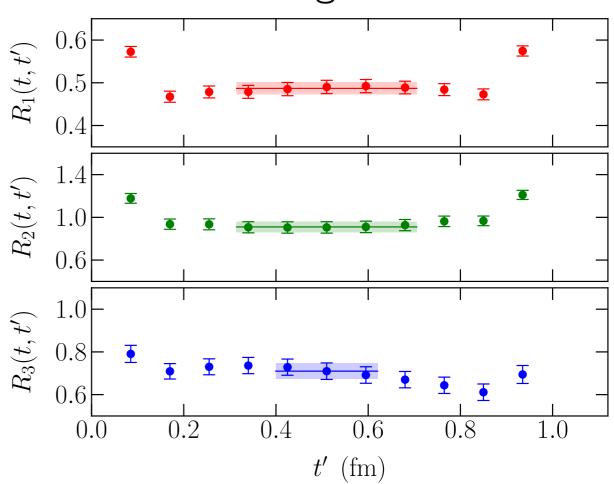

$$C[S^{dd}\overline{S}_{dd}]^{\mu\nu}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S_{\alpha}^{dd}\mu(\mathbf{x},t) \overline{S}_{dd}^{\nu}(0) \rangle,$$

$$C[T^{du}\overline{T}_{du}]_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle T_{\alpha}^{du}(\mathbf{x},t) \overline{T}_{du}\beta(0) \rangle.$$

$$C[T^{du}\overline{T}_{du}]_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle T_{\alpha}^{du}(\mathbf{x},t) \overline{T}_{du}\beta(0) \rangle.$$

$$Axial current$$

Calculate with forward propagators from 2 sources

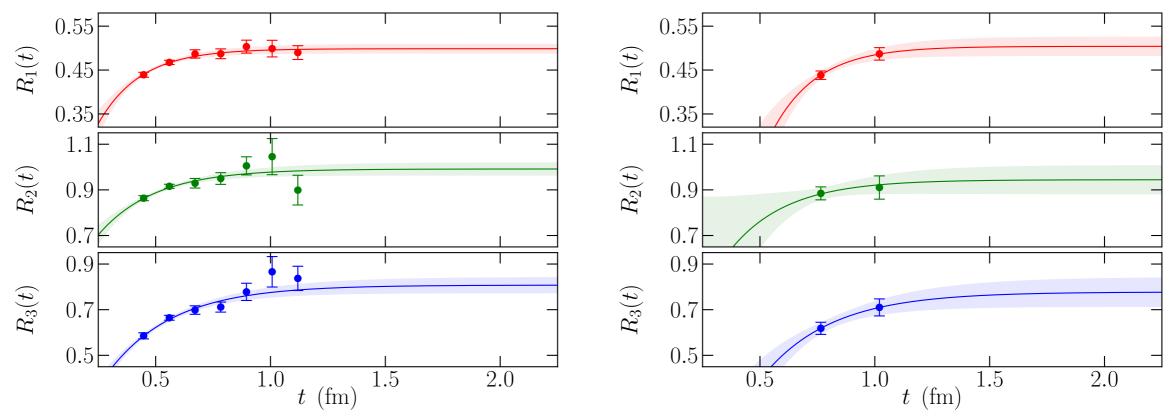

Correlator ratios

Ratios of 3pt to 2pt correlation functions give

effective couplings

$$R_1(t, t') = -\frac{\frac{1}{3} \sum_{\mu=1}^{3} C[P^{*d} A P_u^{\dagger}]^{\mu\mu}(t, t')}{C[P^u P_u^{\dagger}](t)}$$
$$\overset{t, t' \to \infty}{\longrightarrow} (g_1)_{\text{eff}}$$

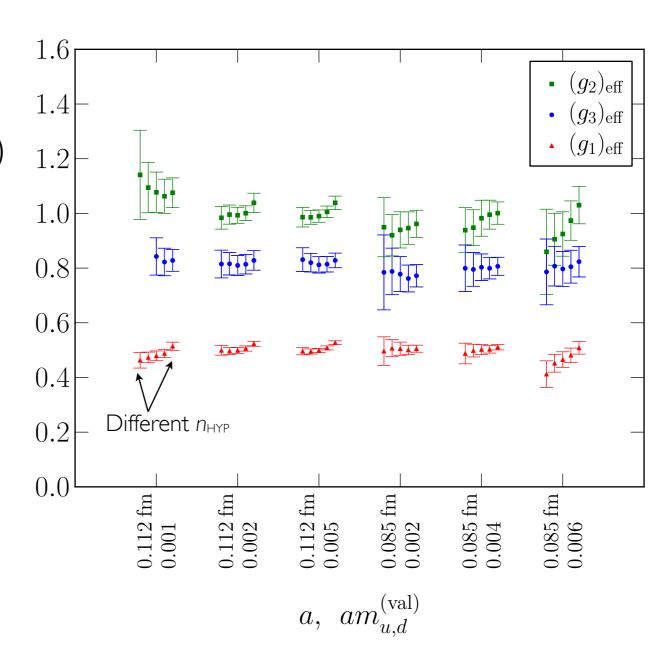
 Ratios for varying operator insertion time (t')

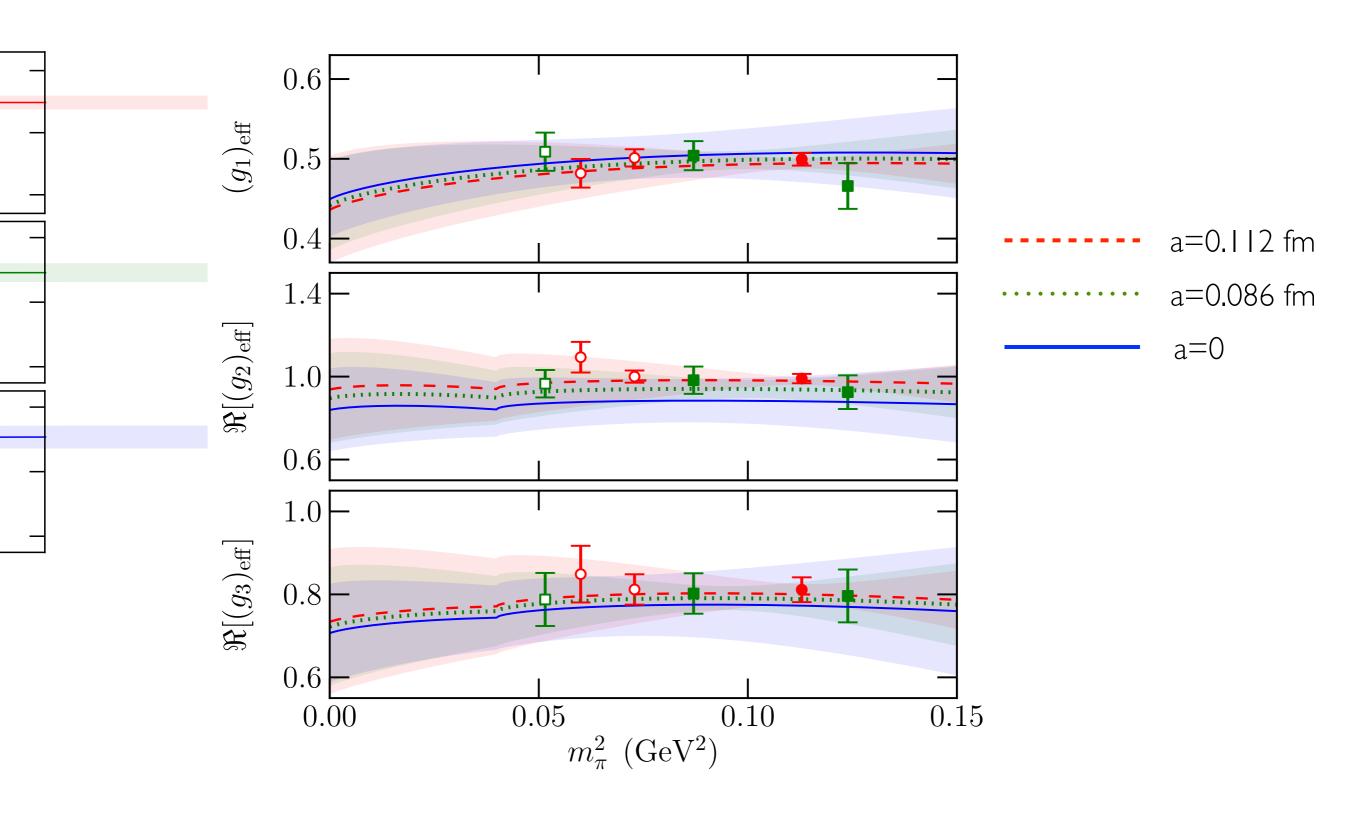

- Negligible t' dependence away from source/sink
 - No evidence for large transition matrix elements

Source-sink separation

Extract effective axial couplings (g_i)_{eff} from t extrapolation

$$R_i(t, a, m_{\pi}, n_{\text{HYP}}) = (g_i)_{\text{eff}}(a, m_{\pi}, n_{\text{HYP}}) - A_i(a, m_{\pi}, n_{\text{HYP}})e^{-\delta_i(a, m_{\pi}, n_{\text{HYP}})t}$$


• Constrain δ_i for a=0.086 fm from δ_i at a=0.112 fm


• Fitted gaps: $\delta_i \sim 0.7$ —1.0 GeV

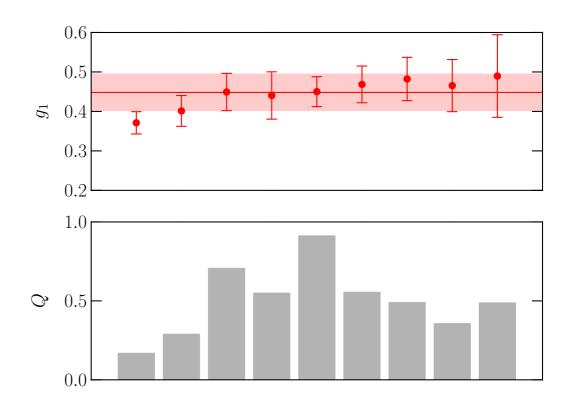
Source-sink separation

- Extracted effective couplings $(g_i)_{\text{eff}}(a, m_{\pi}, n_{\text{HYP}})$
- Estimate systematic uncertainty in extrapolation
 - Remove I or 2 points
 - Add second exp with Gaussian priors
 - 2, 3, 5% for $g_{1,2,3}$

$$(g_1)_{\mathrm{eff}}(a,m,n_{\mathrm{HYP}}) = \underbrace{(g_1)}_{f_2} \left[1 - \frac{2}{f^2} \, \mathcal{I}(m_{\pi}^{(vs)}) + \underbrace{f_1^{(vs)}}_{f_2} \left\{ 4 \, \mathcal{H}(m_{\pi_s}^{(vs)},0) - 4 \, \delta_{VS}^2 \, \mathcal{H}_{\eta'}(m_{\pi}^{(vv)},0) \right\} \right] \\ + c_1^{(vv)} \, [m_{\pi}^{(vv)}]^2 + c_1^{(vs)} \, [m_{\pi}^{(vs)}]^2 + d_1, n_{\mathrm{HYP}} \, a^2 \right]. \\ (g_2)_{\mathrm{eff}}(a,m,n_{\mathrm{HYP}}) = \underbrace{(g_2)}_{f_2} \left[1 - \frac{2}{f^2} \, \mathcal{I}(m_{\pi}^{(vs)}) + \underbrace{f_2^2}_{f_2^2} \left\{ \frac{3}{2} \, \mathcal{H}(m_{\pi}^{(vs)},0) - \delta_{VS}^2 \, \mathcal{H}_{\eta'}(m_{\pi}^{(vv)},0) \right\} \right] \\ + \underbrace{(g_3)}_{f_2^2} \left\{ 2 \, \mathcal{H}(m_{\pi}^{(vs)},-\Delta) - \mathcal{H}(m_{\pi}^{(vv)},-\Delta) - 2 \, \mathcal{K}(m_{\pi}^{(vs)},-\Delta,0) \right\} \\ + c_2^{(vv)} \, [m_{\pi}^{(vv)}]^2 + c_2^{(vs)} \, [m_{\pi}^{(vs)}]^2 + d_2, n_{\mathrm{HYP}} \, a^2 \right], \\ (g_3)_{\mathrm{eff}}(a,m,n_{\mathrm{HYP}}) = \underbrace{(g_3)}_{f_2^2} \left\{ 1 - \frac{2}{f^2} \, \mathcal{I}(m_{\pi}^{(vs)}) + \underbrace{(g_3)}_{f_2^2} \left\{ \mathcal{H}(m_{\pi}^{(vs)},-\Delta) - \frac{1}{2} \, \mathcal{H}(m_{\pi}^{(vv)},-\Delta) \right. \right. \\ \left. + \frac{3}{2} \, \mathcal{H}(m_{\pi}^{(vv)},\Delta) + 3 \, \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{K}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_2^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_2^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_2^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_2^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_2^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_2^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_3^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_3^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_3^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_3^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta) + \mathcal{H}(m_{\pi}^{(vs)},\Delta,0) \right\} \\ + \underbrace{(g_3)}_{f_3^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta) - \mathcal{H}(m_{\pi}^{(vs)},\Delta,\Delta) \right\} \\ + \underbrace{(g_3)}_{f_3^2} \left\{ - \mathcal{H}(m_{\pi}^{(vs)},\Delta,\Delta) - \mathcal{$$

Systematic uncertainties

Excited states in fits

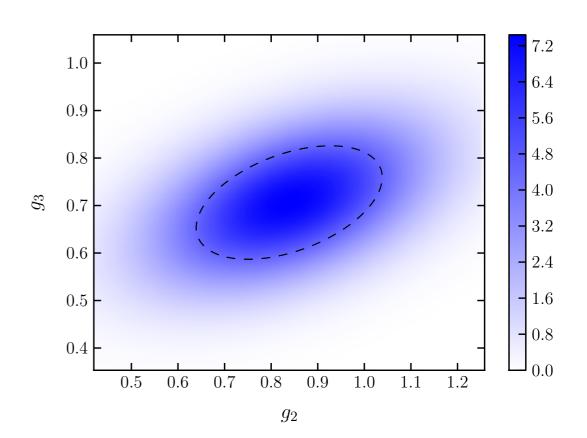

Heavy quark discretisation: various levels of HYP

smearing

 Higher order terms in chiral extrapolation (quark mass and lattice spacing)

Unphysical strange quark mass

Axial couplings


Final extracted values

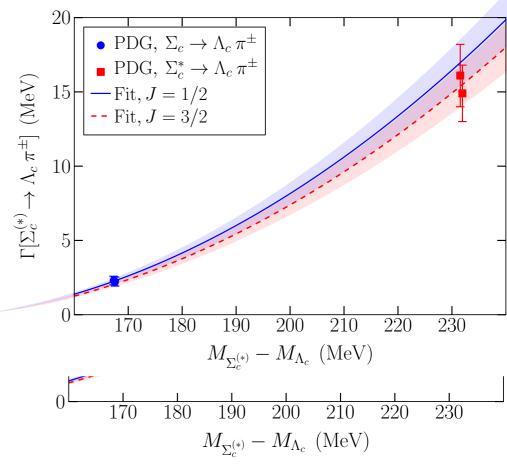
$$g_1 = 0.449 \pm 0.047_{\text{stat}} \pm 0.019_{\text{syst}}$$

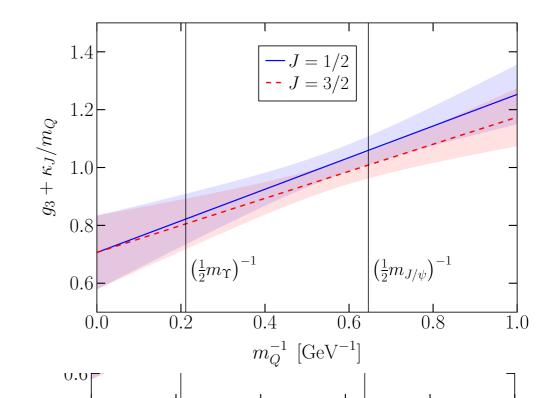
 $g_2 = 0.84 \pm 0.20_{\text{stat}} \pm 0.04_{\text{syst}}$
 $g_3 = 0.71 \pm 0.12_{\text{stat}} \pm 0.04_{\text{syst}}$

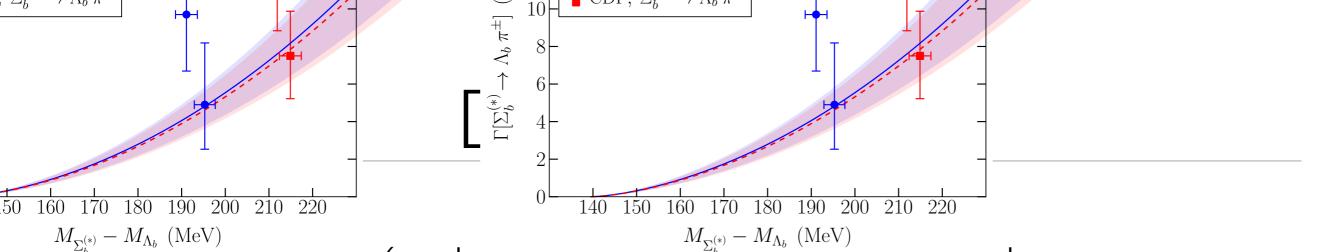
Sources of systematic errors

Source	g_1	g_2	g_3
NNLO terms in fits of m_{π} - and a -dependence	3.6%	2.8%	3.7%
Higher excited states in fits to $R_i(t)$	1.7%	2.8%	4.9%
Unphysical value of $m_s^{\text{(sea)}}$	1.5%	1.5%	1.5%
Total	4.2%	4.3%	6.3%

 Dominated by statistical errors

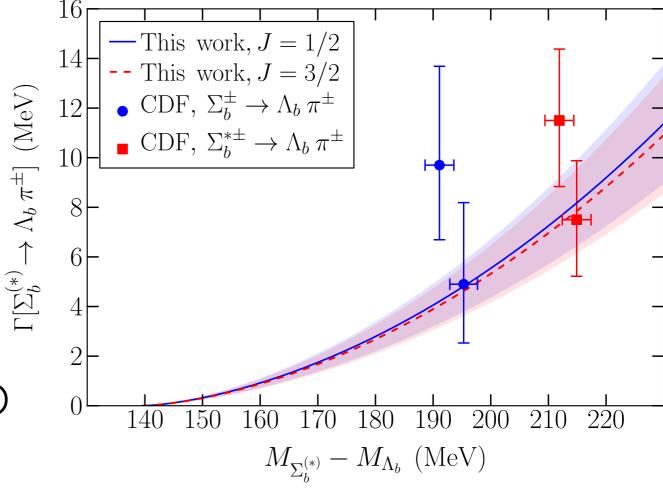

Decay widths


 Strong decays allowed for heavy baryons


$$\Gamma[S \to T \,\pi] = c_{\rm f}^2 \, \frac{1}{6\pi f_{\pi}^2} \left(g_3 + \frac{\kappa_J}{m_Q} \right)^2 \frac{M_T}{M_S} \, |\mathbf{p}_{\pi}|^3$$

$$c_{\rm f} = \begin{cases} 1 & \text{for } \Sigma_Q^{(*)} \to \Lambda_Q \, \pi^{\pm}, \\ 1 & \text{for } \Sigma_Q^{(*)} \to \Lambda_Q \, \pi^0, \\ 1/\sqrt{2} & \text{for } \Xi_Q^{\prime(*)} \to \Xi_Q \, \pi^{\pm}, \\ 1/2 & \text{for } \Xi_Q^{\prime(*)} \to \Xi_Q \, \pi^0. \end{cases}$$

- I/m_Q corrections important: determine from charm sector
- Effective coupling vs I/mQ
- Valid only at LO in HHχPT



Calculate (and predict) bottom and charm baryon decay widths

Hadron	This work	Experiment
Σ_b^+	4.2(1.0)	$9.7^{+3.8+1.2}_{-2.8-1.1}$ [13]
Σ_b^-	4.8(1.1)	$4.9^{+3.1}_{-2.1} \pm 1.1 [13]$
Σ_b^{*+}	7.3(1.6)	$11.5^{+2.7+1.0}_{-2.2-1.5}$ [13]
Σ_b^{*-}	7.8(1.8)	$7.5^{+2.2+0.9}_{-1.8-1.4}$ [13]
Ξ_b'	1.1 (CL=90%)	
Ξ_b^*	2.8 (CL=90%)	
Ξ_c^{*+}	2.44(26)	< 3.1 (CL=90%) [70]
Ξ_c^{*0}	2.78(29)	< 5.5 (CL=90%) [71]

• Uses determinations of Ξ_b' , Ξ_b^* masses from LQCD [Lewis & Woloshyn 09]

• Update: CDF observation of Ξ_b^* leads to

$$\Gamma[\Xi_b^{*0} \to \Xi_b^- \pi^+, \; \Xi_b^0 \; \pi^0] = 0.51 \pm 0.16 \; \, \mathrm{MeV}.$$

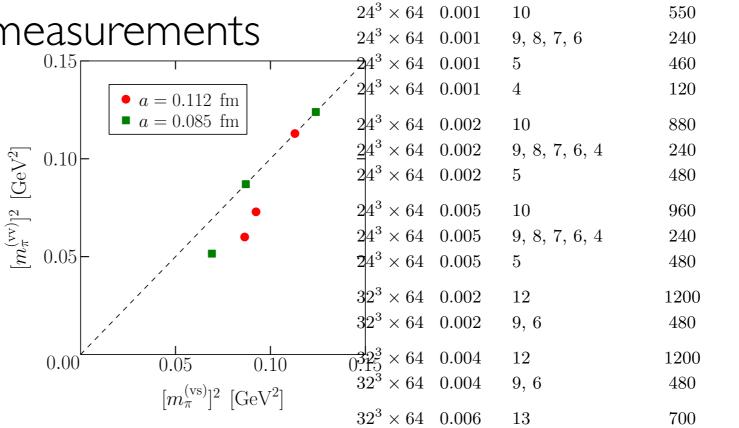
Heavy hadron axial couplings

First complete calculation of heavy hadron axial couplings controlling all systematics

$$g_1 = 0.449 \pm 0.047_{\text{stat}} \pm 0.019_{\text{syst}}$$

 $g_2 = 0.84 \pm 0.20_{\text{stat}} \pm 0.04_{\text{syst}}$
 $g_3 = 0.71 \pm 0.12_{\text{stat}} \pm 0.04_{\text{syst}}$

- Considerably smaller than quark model estimates
- Pleasant consequences for convergence of $HH\chi PT$
- Allows pre- (and post-) dictions of strong decay widths (also $\Gamma[\Xi_c^* \to \Xi_c \gamma]$)
- Currently extending to look at SU(3) breaking effects



Actions and ensembles

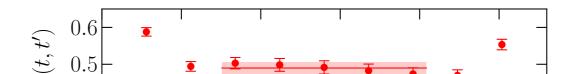
Further details

$L^3 \times T$	$am_s^{(\mathrm{sea})}$	$am_{u,d}^{(\mathrm{sea})}$	$am_{u,d}^{(\mathrm{val})}$	a (fm)	$m_{\pi}^{(\mathrm{ss})} \; (\mathrm{MeV})$	$m_{\pi}^{(\mathrm{vs})} \; (\mathrm{MeV})$	$m_{\pi}^{(\mathrm{vv})} \; (\mathrm{MeV})$
$24^3 \times 64$	0.04	0.005	0.001	0.1119(17)	336(5)	294(5)	245(4)
$24^3 \times 64$	0.04	0.005	0.002	0.1119(17)	336(5)	304(5)	270(4)
$24^3 \times 64$	0.04	0.005	0.005	0.1119(17)	336(5)	336(5)	336(5)
$32^3 \times 64$	0.03	0.004	0.002	0.0849(12)	295(4)	263(4)	227(3)
$32^3 \times 64$	0.03	0.004	0.004	0.0849(12)	295(4)	295(4)	295(4)
$32^3 \times 64$	0.03	0.006	0.006	0.0848(17)	352(7)	352(7)	352(7)

Numbers of measurements

 $\overline{L^3} \times T$

 $am_{u,d}^{(\text{val})}$


t/a

 $N_{\rm meas}$ (approx.)

Actions and ensembles

- Domain-wall light quarks [RBC/UKQCD]
 - Lattice chiral symmetry
- Static heavy quarks with n_{HYP}=0,1,2,3,5,10 levels of HYP smearing
- Two lattice spacings
 a = 0.085, 0.112 fm
- Six <u>valence</u> quark masses $m_{\pi} = 0.23-0.35$ GeV
- Single $(2.5 \text{ fm})^3 \text{ volume}$

Ensemble	a (fm)	$L^3 \times T$	$am_{u,d}^{(\mathrm{sea})}$	$m_{\pi}^{(\mathrm{ss})} \; (\mathrm{MeV})$
A	0.1119(17)	$24^3 \times 64$	0.005	336(5)
В	0.0849(12)	$32^3 \times 64$	0.004	295(4)
С	0.0848(17)	$32^3 \times 64$	0.006	352(7)
Ensemble	$am_{u,d}^{(\mathrm{val})}$ m	$n_{\pi}^{(\mathrm{vs})} \; (\mathrm{MeV})$	$m_{\pi}^{(\mathrm{vv})}$ (MeV)	t/a
A	0.001	294(5)	245(4)	4, 5,, 10
A	0.002	304(5)	270(4)	4, 5,, 10
A	0.005	336(5)	336(5)	4, 5,, 10
В	0.002	263(4)	227(3)	6, 9, 12
В	0.004	295(4)	295(4)	6, 9, 12
\mathbf{C}	0.006	352(7)	352(7)	13

H-L hadrons in lattice QCD

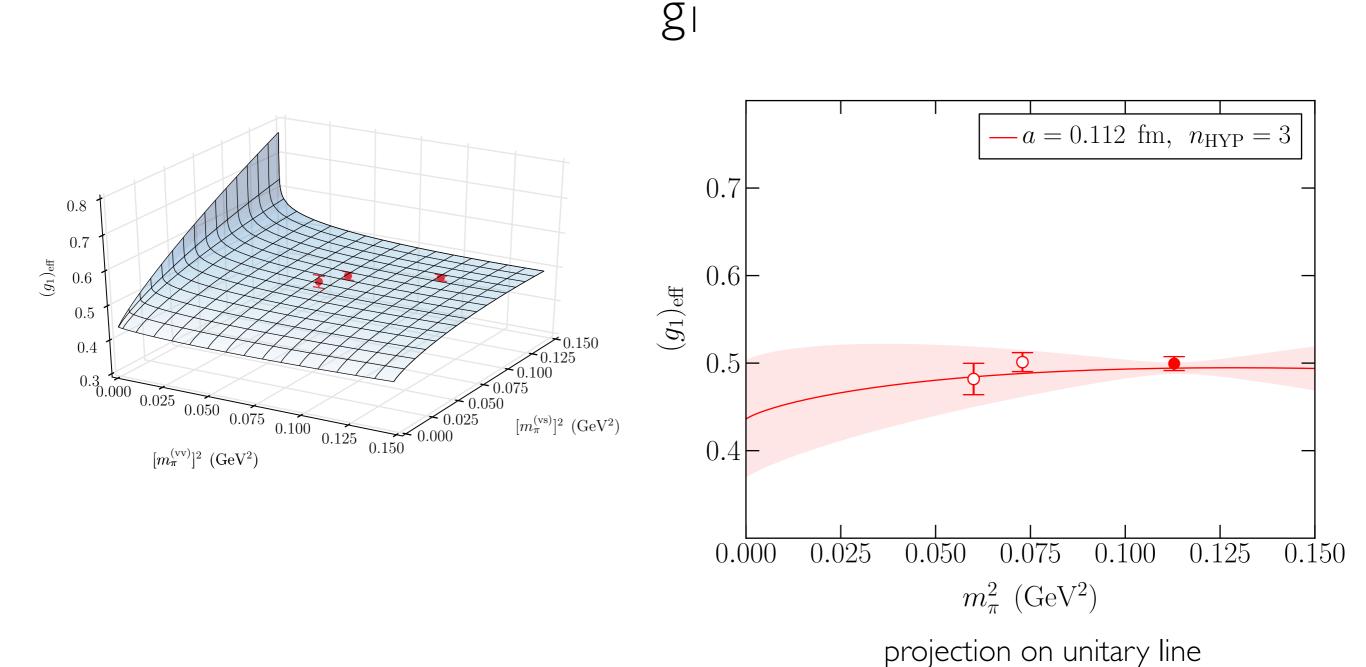
- Light quark mass dependence of H-L(L) observables controlled by pion loops, coupled through g_{1,2,3}
- Important for control of current lattice QCD calculations at unphysical quark masses

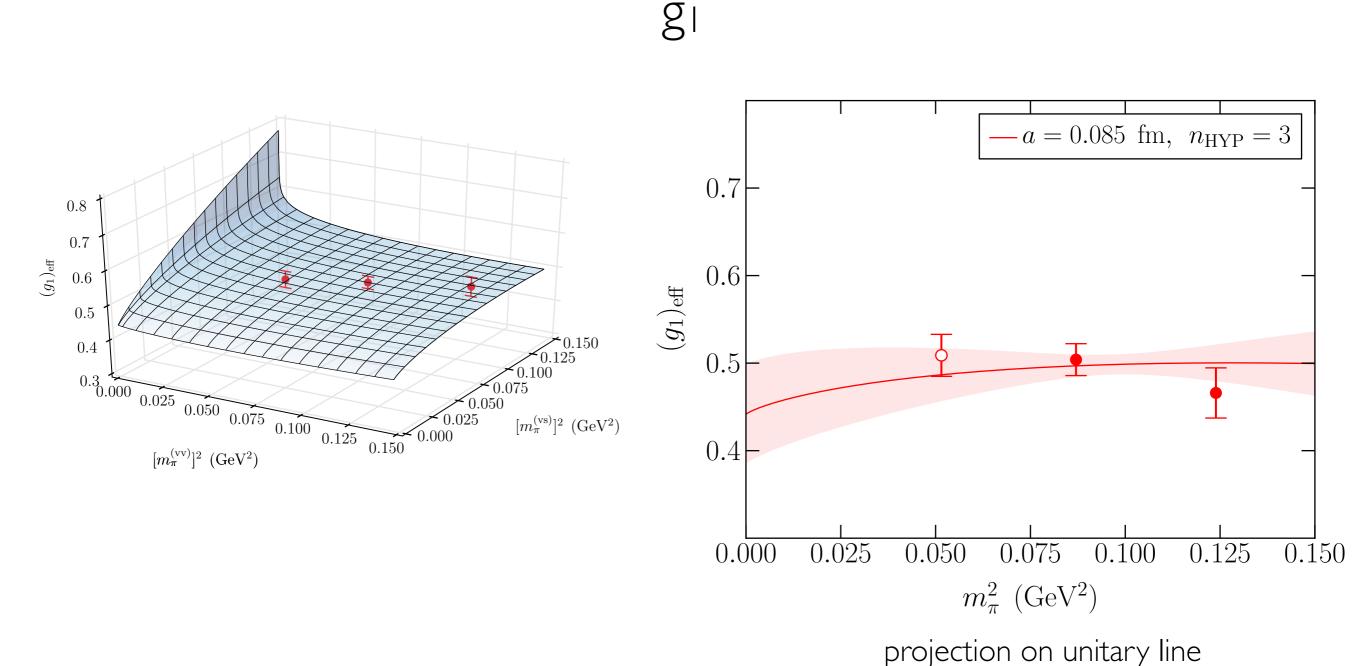
Correlator ratios

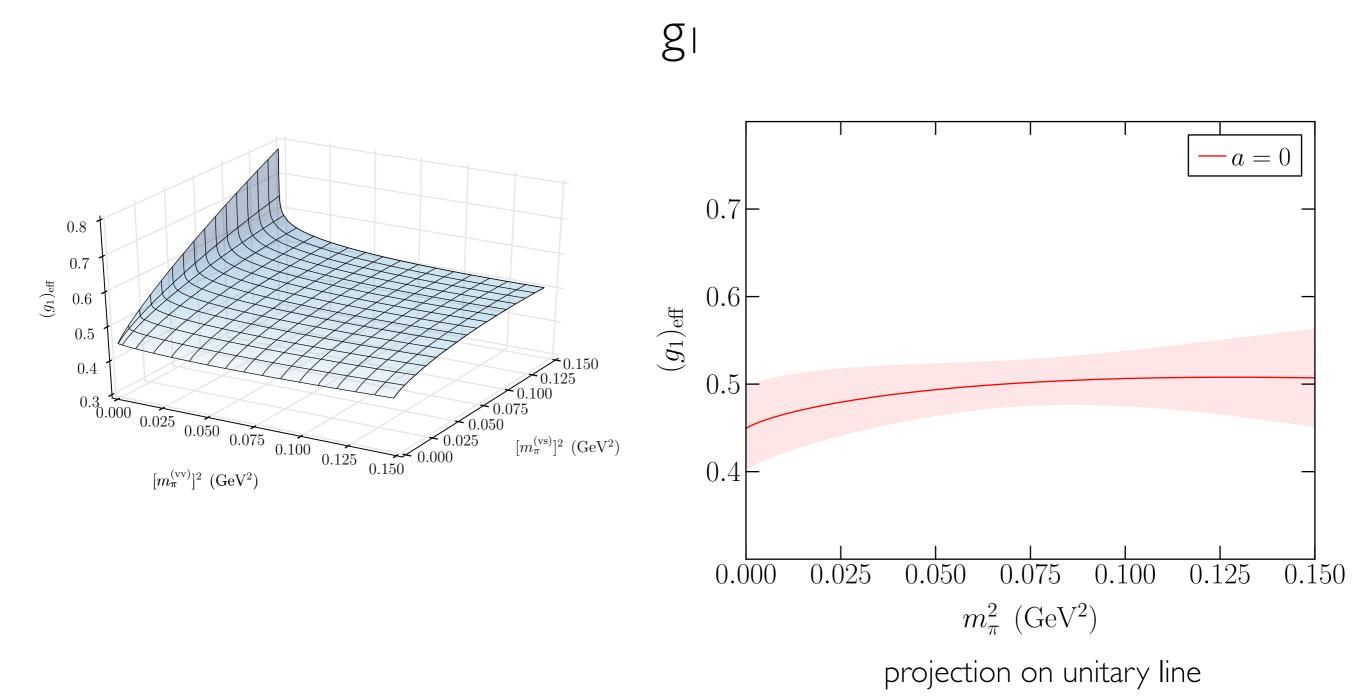
 Ratios of 3pt to 2pt correlation functions give effective couplings

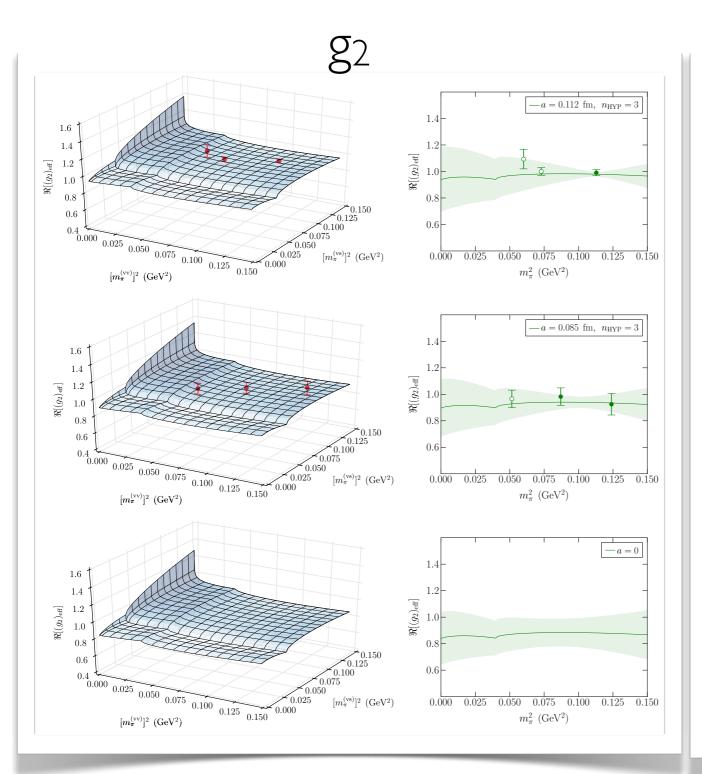
$$R_{1}(t, t') = -\frac{\frac{1}{3} \sum_{\mu=1}^{3} C[P^{*d} A P_{u}^{\dagger}]^{\mu\mu}(t, t')}{C[P^{u} P_{u}^{\dagger}](t)} \xrightarrow{t, t' \to \infty} (g_{1})_{\text{eff}}$$

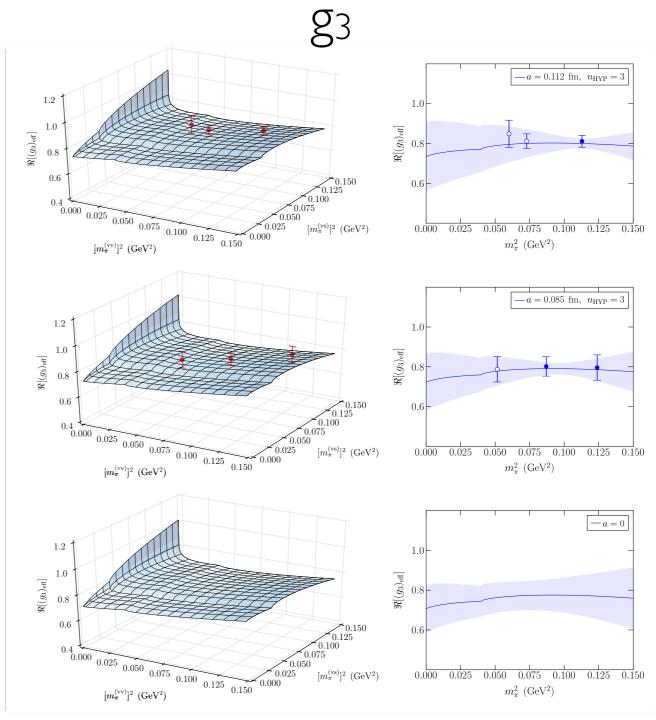
$$R_{2}(t, t') = 2 \frac{\frac{i}{6} \sum_{\mu,\nu,\rho=1}^{3} \epsilon_{0\mu\nu\rho} C[S^{dd} A \overline{S}_{du}]^{\mu\nu\rho}(t, t')}{\frac{1}{3} \sum_{\mu=1}^{3} C[S^{dd} \overline{S}_{dd}]^{\mu\mu}(t)} \xrightarrow{t, t' \to \infty} (g_{2})_{\text{eff}}$$

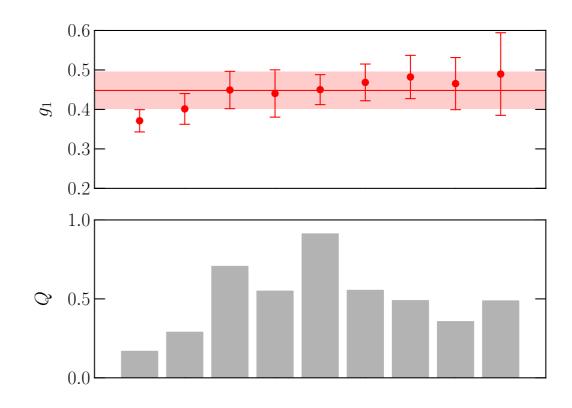

For transition coupling, double ratio


$$R_{3}(t, t') = \sqrt{\frac{\left[\frac{1}{3}\sum_{\mu=1}^{3}C[S^{dd}A\ \overline{T}_{du}]^{\mu\mu}(t, t')\right]\left[\frac{1}{3}\sum_{\mu=1}^{3}C[T^{du}A^{\dagger}\ \overline{S}_{dd}]^{\mu\mu}(t, t')\right]}{\left[\frac{1}{3}\sum_{\mu=1}^{3}C[S^{dd}\ \overline{S}_{dd}]^{\mu\mu}(t)\right]\left[C[T^{du}\ \overline{T}_{du}](t)\right]}} \xrightarrow{t,t'\to\infty} (g_{3})_{\text{eff}}$$


Excited state contributions important for t,t'<∞
 E.g.

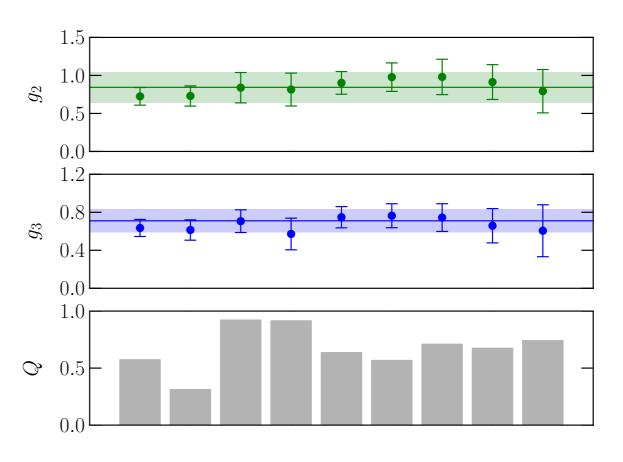

$$R_2(t, t/2) = A_{11}^{(SS)} + \left| \frac{Z_{S,2}}{Z_{S,1}} \right|^2 \left(A_{22}^{(SS)} - A_{11}^{(SS)} \right) e^{-\delta_S t} + 2 \Re \left[\frac{Z_{S,1} Z_{S,2}^*}{|Z_{S,1}|^2} A_{12}^{(SS)} \right] e^{-\frac{1}{2} \delta_S t} + \dots$$


with energy gap $\delta_S = E_{S,2} - E_{S,1}$



- Various choices of HQ actions to use in fits
- Heavy meson coupling gr

$\overline{n_{ m HYP}}$	g_1	d.o.f.	$\chi^2/\mathrm{d.o.f.}$	\overline{Q}
1, 2, 3, 5, 10	0.371(28)	30 - 8	1.3	0.17
1, 2, 3, 5	0.401(39)	24 - 7	1.2	0.29
1, 2, 3	0.449(47)	18 - 6	0.75	0.70
1, 2	0.440(60)	12 - 5	0.85	0.54
10	0.450(38)	6 - 4	0.09	0.91
5	0.468(47)	6 - 4	0.61	0.55
3	0.482(55)	6 - 4	0.73	0.49
2	0.465(66)	6 - 4	1.0	0.36
1	0.49(10)	6 - 4	0.72	0.49


55 0.4 0.5 0.3 0.2

jum extrapolation

Heavy baryon couplings g_{2,3}

$n_{ m HYP}$	g_2	g_3	d.o.f.	$\chi^2/\mathrm{d.o.f.}$	Q
1, 2, 3, 5, 10	0.72(12)	0.635(90)	58 - 16	0.94	0.57
1, 2, 3, 5	0.73(13)	0.61(11)	46 - 14	1.1	0.31
1, 2, 3	0.84(20)	0.71(12)	34 - 12	0.61	0.92
1, 2	0.81(22)	0.57(17)	22 - 10	0.50	0.91
10	0.90(15)	0.75(11)	12 - 8	0.64	0.64
5	0.98(19)	0.76(13)	12 - 8	0.74	0.57
3	0.98(23)	0.74(15)	12 - 8	0.54	0.71
2	0.91(23)	0.66(18)	12 - 8	0.51	0.67
1	0.79(29)	0.61(27)	12 - 8	0.42	0.74
	-				

Higher order terms

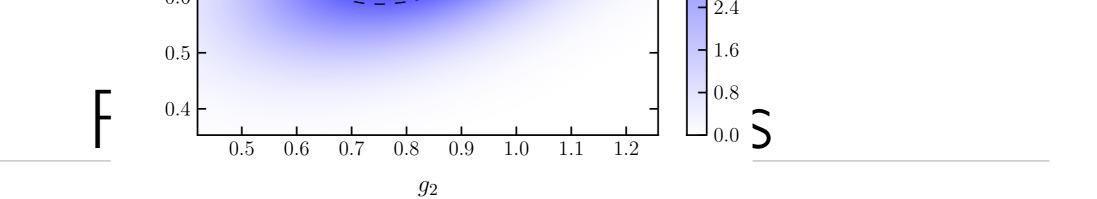
 Add higher order analytic terms in quark masses and lattice spacings

$$(g_{i})_{\text{eff}}^{(\text{NLO}+\text{HO})}(a, m, n_{\text{HYP}}) = (g_{i})_{\text{eff}}^{(\text{NLO})}(a, m, n_{\text{HYP}})$$

$$+g_{i} \left[c_{i}^{(\text{vv},\text{vv})} \left[m_{\pi}^{(\text{vv})} \right]^{4} + c_{i}^{(\text{vs},\text{vs})} \left[m_{\pi}^{(\text{vs})} \right]^{4} + c_{i}^{(\text{vv},\text{vs})} \left[m_{\pi}^{(\text{vv})} \right]^{2} \left[m_{\pi}^{(\text{vs})} \right]^{2} \right]$$

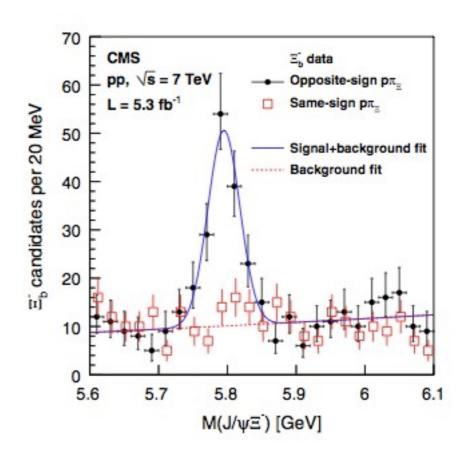
$$+ d_{i, n_{\text{HYP}}}^{(\text{vv})} a^{2} \left[m_{\pi}^{(\text{vv})} \right]^{2} + d_{i, n_{\text{HYP}}}^{(\text{vs})} a^{2} \left[m_{\pi}^{(\text{vs})} \right]^{2} + h_{i, n_{\text{HYP}}} a^{4} \right].$$

Refit with priors on c_i, d_i and h_i


$$\begin{split} c_i^{(\text{vv,vv})} &= 0 \, \pm \, w/\Lambda_\chi^4, \\ c_i^{(\text{vs,vs})} &= 0 \, \pm \, w/\Lambda_\chi^4, \\ c_i^{(\text{vv,vs})} &= 0 \, \pm \, w/\Lambda_\chi^4, \\ c_i^{(\text{vv,vs})} &= 0 \, \pm \, w/\Lambda_\chi^4, \\ d_{i,\,n_{\text{HYP}}}^{(\text{vv})} &= 0 \, \pm \, w\,\Lambda_{\text{QCD}}^2/\Lambda_\chi^2, \\ d_{i,\,n_{\text{HYP}}}^{(\text{vs})} &= 0 \, \pm \, w\,\Lambda_{\text{QCD}}^2/\Lambda_\chi^2, \\ h_{i,\,n_{\text{HYP}}} &= 0 \, \pm \, w\,\Lambda_{\text{QCD}}^4/\Lambda_\chi^2. \end{split}$$

w	g_1	$\delta\sigma(g_1)$	g_2	$\delta\sigma(g_2)$	g_3	$\delta\sigma(g_3)$
0	0.449(47)	0	0.84(20)	0	0.71(12)	0
1	0.449(47)	0.0020	0.84(20)	0.0023	0.71(12)	0.0045
5	0.452(48)	0.0089	0.84(20)	0.014	0.70(12)	0.017
10	0.455(50)	0.016	0.84(20)	0.024	0.70(12)	0.026
50	0.464(72)	0.054	0.82(22)	0.099	0.68(15)	0.094
100	0.452(94)	0.082	0.78(26)	0.17	0.63(21)	0.17

$$\delta\sigma(g_i) = \sqrt{\sigma^2(g_i)^{(\text{NLO}+\text{HO})} - \sigma^2(g_i)^{(\text{NLO})}},$$


w = 10 gives systematic uncertainty (w=1 is NDA)

ullet Finite volume effects computed in HH χ PT

$m_{\pi}^{(\mathrm{vs})} \; (\mathrm{MeV})$	$m_{\pi}^{(\mathrm{vv})} \; (\mathrm{MeV})$	$\frac{(g_1)_{\text{eff}}^{(\infty)} - (g_1)_{\text{eff}}^{(L)}}{(g_1)_{\text{eff}}^{(\infty)}}$	$\frac{(g_2)_{\text{eff}}^{(\infty)} - (g_2)_{\text{eff}}^{(L)}}{(g_2)_{\text{eff}}^{(\infty)}}$	$\frac{(g_3)_{\rm eff}^{(\infty)} - (g_3)_{\rm eff}^{(L)}}{(g_3)_{\rm eff}^{(\infty)}}$
294	245	0.0057	0.015	0.0074
304	270	0.0040	0.0070	0.0027
336	336	0.0016	0.00037	-0.00079
263	227	0.0072	0.028	0.013
295	295	0.0031	0.00027	-0.0012
352	352	0.0013	0.00033	-0.00071

Very small, higher order FV negligible

