| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 0000000             | 0000                       | 0           |
|              |                     |                     |                            |             |

# Status of Nucleon Structure Calculations with 2+1 Flavors of Domain Wall Fermions

### Meifeng Lin for the RBC and UKQCD Collaborations

Yale University RIKEN BNL Research Center

Lattice 2012, Cairns, Australia, June 24 - 29, 2012

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 000000              | 0000                       | 0           |
|              |                     |                     |                            |             |

#### This work is done with

Yasumichi Aoki Nagoya-KMI Tom Blum U. Connecticut Taku Izubuchi BNL Chulwoo Jung BNL [strangeness, Monday] Shigemi Ohta KEK [gA, Wednesday] Shoichi Sasaki U. Tokyo Eigo Shintani BNL [LMA/AMA, poster] Takeshi Yamazaki Nagoya-KMI

#### The numerical calculations were performed on

- BG/P at ANL and U. Edinburgh [gauge configurations]
- TeraGrid/XSEDE supported by National Science Foundation grant number OCI-1053575 [propagators]
- RIKEN Cluster of Clusters at RIKEN [propagators]

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 0000000             | 0000                       | 0           |
|              |                     |                     |                            |             |
|              |                     |                     |                            |             |

# Outline

Introduction

### **Calculation Details**

#### **Preliminary Results**

Isovector Dirac and Pauli Form Factors

**Error Reduction Techniques** 

### Conclusions

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| •            | 00000               | 0000000             | 0000                       | 0           |
|              |                     |                     |                            |             |

# Introduction

- Nucleon structure calculations suffer from various sources of systematic errors, among which
  - chiral extrapolation
  - finite volume effects
  - excited-state contaminations

are the most actively researched topics in the past few years.

- Ideally we'd like to do the calculations at physical pion mass with infinitely large volume. Realistically, our goal is to
  - push the pion mass closer to the physical point.
  - simulate at a large box.
  - keep the excited-state contaminations under control: sufficiently large source-sink separation or extrapolation from multiple separations.
- Such calculations are very challenging: bish sumerical cost per perpendiculations

high numerical cost per propagator at small  $m_{\pi}$ , nucleon signal decreases exponentially with  $m_{\pi}$ .

| Introduction<br>O | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions<br>O |
|-------------------|---------------------|---------------------|----------------------------|------------------|
|                   |                     |                     |                            |                  |

# Lattice Setup

 Gauge Ensembles: 2+1-flavor Domain Wall Fermion gauge ensembles generated by the RBC and UKQCD Collaborations.

Iwasaki gauge action, with Dislocation-Suppressing-Determinant Ratio (ID)

•  $\beta = 1.75 \rightarrow a^{-1} \approx 1.37$  GeV.

| $am_l$ | $am_s$ | $L^3 \times T$   | $L_s$ | $m_{\pi}$ [MeV] | $m_{\pi}L$ | <i>a</i> [fm] | amres  |
|--------|--------|------------------|-------|-----------------|------------|---------------|--------|
| 0.001  | 0.042  | $32^3 \times 64$ | 32    | 170             | 4.0        | 0.146         | 0.0018 |
| 0.0042 | 0.042  | $32^3 \times 64$ | 32    | 250             | 5.8        | 0.146         | 0.0018 |

#### Quark Propagators:

- Gaussian-smeared source with APE-smeared gauge links
- $(t_{snk} t_{src})/a = 9 \Rightarrow t_{snk} t_{src} \approx 1.3 \text{ fm}$
- 4 sources per configuration at t/a = 0, 16, 32, 48
- Number of configurations analyzed:
  - $am_l = 0.001$ :  $103 \Rightarrow \underline{412}$  correlation functions
  - $am_l = 0.0042 : 165 \Rightarrow \underline{660}$  correlation functions

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 0000                | 000000              | 0000                       | 0           |

### Nucleon Two and Three-Point Functions

We use the standard proton interpolating operator, with smearing S = Gaussian (G) or Local (L)

$$\chi_S(x) = \epsilon_{abc} \left( [u_a^S(x)]^T C \gamma_5 d_b^S(x) \right) u_c^S(x)$$

Nucleon two-point functions:

$$C_{S}(t-t_{src},p) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \operatorname{Tr} \left[ \mathcal{P}_{4} \langle 0|\chi_{S}(\vec{x},t)\overline{\chi}_{G}(\vec{0},t_{src})|0\rangle \right]$$

Nucleon three-point functions:

$$C_{J_{\mu}}^{\mathcal{P}_{\alpha}} = \sum_{\vec{x},\vec{z}} e^{i\vec{q}\cdot\vec{z}} \operatorname{Tr}[\mathcal{P}_{\alpha}\langle 0|\chi_{G}(\vec{x},t_{snk})J_{\mu}(\vec{z},t)\overline{\chi}_{G}(\vec{0},t_{src})|0\rangle]$$

with the projection operators:

$$\mathcal{P}_4 = (1 + \gamma_4)/2$$
  
 $\mathcal{P}_{53} = (1 + \gamma_4)\gamma_5\gamma_3/2$ 

| Introduction<br>O | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions<br>O |
|-------------------|---------------------|---------------------|----------------------------|------------------|
|                   |                     |                     |                            |                  |
|                   |                     |                     |                            |                  |

### Connected vs. Disconnected

Two types of contractions contribute to the three-point functions:



- We do not yet include disconnected digrams in our calculations.
- ► In the isovector case (p − n), only connected diagrams contribute. [focus of the talk]

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 000000              | 0000                       | 0           |

### Determination of Form Factors

Nucleon vector form factors:

$$\langle p|V_{\mu}^{+}(x)|n\rangle = \overline{u}_{p}\left[F_{1}(q^{2}) + \frac{\sigma_{\mu\lambda}q_{\lambda}}{2M_{N}}F_{2}(q^{2})\right]u_{n}e^{iq\cdot x}$$

 $F_1(q^2), F_2(q^2)$ : Dirac and Pauli form factors.

Nucleon Sachs form factors:

$$G_E(q^2) = F_1(q^2) - \frac{q^2}{4M_N^2}F_2(q^2)$$
  

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

We define the following ratio

$$R_{J_{\mu}}^{\mathcal{P}_{\alpha}}(q,t) = K \cdot \frac{C_{J_{\mu}}^{\mathcal{P}_{\alpha}}(\vec{q},t)}{C_{G}(t_{\rm snk} - t_{\rm src},0)} \left[ \frac{C_{L}(t_{\rm snk} - t,q)C_{G}(t - t_{\rm src},0)C_{L}(t_{\rm snk} - t_{\rm src},0)}{C_{L}(t_{\rm snk} - t_{\rm src},0)C_{G}(t - t_{\rm src},q)C_{L}(t_{\rm snk} - t_{\rm src},q)} \right]^{1/2},$$

with

$$K = M_N \sqrt{2E(q)(M_N + E(q))}$$

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 0000000             | 0000                       | 0           |
|              |                     |                     |                            |             |

### Determination of Form Factors

The ratios conveniently defined to be directly related to the Sachs Form Factors:

$$\begin{aligned} G_E(q,t) &= \frac{R_{V_4}^{\mathcal{P}_4}(q,t)}{M_N(M_N+E(q))}, \\ G_M(q,t) &= \frac{1}{2} \left( \frac{R_{V_1}^{\mathcal{P}_{53}}(q,t)}{q_2 M_N} - \frac{R_{V_2}^{\mathcal{P}_{53}}(q,t)}{q_1 M_N} \right), \end{aligned}$$

And the Dirac and Pauli form factors can be obtained by:

$$F_1(q^2) = \frac{G_E(q) + \tau G_M(q)}{1 + \tau}, \text{ for all } q$$
  

$$F_2(q^2) = \frac{G_M(q) - G_E(q)}{1 + \tau}, \text{ for } q \neq 0$$

where  $\tau = q^2/(4M_N^2)$ .

| 0 0 | 0000 | 000000  | 0000 | 0 |
|-----|------|---------|------|---|
| 0 0 |      | •000000 | 0000 | 0 |

Isovector Dirac and Pauli Form Factors

$$F_1^{u-d}(q^2)$$
 Plateaus

$$E(q) = \sqrt{n^2 \left(\frac{2\pi}{L}\right)^2 + M_N^2}$$



- ▶ Good plateaus for all values of *n*<sup>2</sup>. No signs of excited-state contaminations.
- Choose fit range t = [2, 7].

| Introduction                           | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |  |
|----------------------------------------|---------------------|---------------------|----------------------------|-------------|--|
| 0                                      | 00000               | 000000              | 0000                       | 0           |  |
| Isovector Dirac and Pauli Form Factors |                     |                     |                            |             |  |
|                                        |                     |                     |                            |             |  |





- Good plateaus for all values of  $n^2$  at  $am_l = 0.0042$ .
- Signs of excited-state contaminations at  $am_l = 0.001$ ? Statistical noise is still dominating.

| Introduction<br>O     | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions<br>O |
|-----------------------|---------------------|---------------------|----------------------------|------------------|
| Isovector Dirac and P | auli Form Factors   |                     |                            |                  |
| $F_1^{u-d}(q^2)$      | )                   |                     |                            |                  |



- Large volume  $\rightarrow$  small  $q^2$
- Results for two masses almost indistinguishable.

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 000000              | 0000                       | 0           |
|              |                     |                     |                            |             |

Isovector Dirac and Pauli Form Factors

## Comparison with Previous DWF Calculations



- Mild pion mass dependence
- Translates into mild mass dependence for the radii.

| Introduction                           | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |  |
|----------------------------------------|---------------------|---------------------|----------------------------|-------------|--|
| 0                                      | 00000               | 0000000             | 0000                       | 0           |  |
| Isovector Dirac and Pauli Form Factors |                     |                     |                            |             |  |

Similarly for  $F_2^{u-d}(q^2)$ 



- Mild pion mass dependence
- Very noisy for lighter masses

| Introduction                           | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|----------------------------------------|---------------------|---------------------|----------------------------|-------------|
| 0                                      | 00000               | 0000000             | 0000                       | 0           |
| Isovector Dirac and Pauli Form Factors |                     |                     |                            |             |

## Dirac and Pauli Radii

Mean-squared radii are determined from dipole fits to the form factors:

$$F_i(q^2) = rac{F_i(0)}{\left(1 + q^2/M_i^2\right)^2} \left[ \langle r_i^2 \rangle = rac{12}{M_i^2} 
ight]$$



| Introduction                           | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |  |
|----------------------------------------|---------------------|---------------------|----------------------------|-------------|--|
| 0                                      | 00000               | 000000              | 0000                       | 0           |  |
| Isovector Dirac and Pauli Form Factors |                     |                     |                            |             |  |

## Dirac and Pauli Radii



- $\langle r_1^2 \rangle^{1/2}$  undershoots the experiment by 25%.
- $\langle r_2^2 \rangle^{1/2}$  is approaching the experiment.
- For  $m_{\pi} = 170$  MeV, we may need to worry about finite volume effects.
- Statistical errors are substantial for the ID32 data points.
- Necessary to improve the statistics significantly.

| iction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------|---------------------|---------------------|----------------------------|-------------|
|        | 00000               | 000000              | 0000                       | 0           |

# Low-Mode Averaging (LMA)

- Good for low-mode-dominant observables.
- Use low eigenmodes to approximate the observable.

$$O = O_l + O_{rest}$$

Can improve statistics by averaging over covariant symmetry transformations, e.g., lattice translation g.

$$O = \frac{1}{N_g} \sum_g O_l^g + O_{rest} \equiv O_{appx} + O_{rest}$$

Correct for the bias by computing O regularly (but less frequently), and

$$O_{rest} = O - O_{appx}.$$

Cheap with low-mode deflation.

#### For details, see poster by Eigo Shintani.

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 0000000             | 0000                       | 0           |
|              |                     |                     |                            |             |

# All-Mode Averaging (AMA)

- Necessary for observables with significant high-mode contributions.
- ▶ For each *g* transformation, use sloppy CG (loose stopping condition, *O*(10<sup>-3</sup>)) to correct for the bias from the low modes.

$$\begin{split} O_{appx} &=& \frac{1}{N_g}\sum_g \left(O_l^g+O_h^g\right),\\ O_h^g &=& O_{sloppy}^g-O_l^g. \end{split}$$

Again, correct for the bias by computing O regularly (but less frequently), and

$$O_{rest} = O - O_{appx}.$$

Cheap with low-mode deflation.

For details, see poster by Eigo Shintani.

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 000000              | 0000                       | 0           |
|              |                     |                     |                            |             |

# Tests on $24^3 \times 64$ Lattices

- ▶  $24^3 \times 64$  lattices,  $N_f = 2 + 1$  DWF,  $a^{-1} \approx 1.73$  GeV
- ▶  $am_l = 0.01 \rightarrow m_\pi \approx 420 \text{ MeV}$
- ▶ # of configurations = 80.
- LMA: 180 low eigenmodes,  $N_g = 32$  translations ( $2^3 \times 4$ )
- AMA: Sloppy CG with stop. cond. 0.003. (further speedup with low-mode deflation)
- Full calculations as in Yamazaki et al., PRD79, 114505 (2009):
   # of configurations = 356, with 4 sources / config.
- Cost in units of full propagators:

| LMA        | 80 props   |
|------------|------------|
| AMA        | 138 props  |
| full stat. | 1424 props |

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 000000              | 0000                       | 0           |

### Comparison of LMA, AMA and Original



#### [Eigo Shintani]

- LMA is not enough to reduce the errors  $\rightarrow$  high-mode contributions are important.
- Errors from AMA comparable to "full stat.", but with <u>1/10 the cost.</u>

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 0000000             | 0000                       | •           |
|              |                     |                     |                            |             |

### Conclusions

- It is pricey to go to lighter pion masses with a sufficiently large source-sink separations.
- Current results for the nucleon isovector vector form factors and their associated radii suffer from large statistical errors.
- Improved error reduction techniques are essential.

#### Plans

- Calculations with AMA are underway.
  - $\rightarrow$  Expect to reduce the errors by a factor of 5.
- ► AMA makes it easier to change the source-sink separations. → multiple source-sink separations.
- Longer term:
  - $\rightarrow$  Bigger volumes. Continuum extrapolations.

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 000000              | 0000                       | 0           |
|              |                     |                     |                            |             |

# **Backup Slides**

| Introduction | Calculation Details | Preliminary Results | Error Reduction Techniques | Conclusions |
|--------------|---------------------|---------------------|----------------------------|-------------|
| 0            | 00000               | 000000              | 0000                       | 0           |
|              |                     |                     |                            |             |

# Cost (in the case of m=0.01)

Use of unit of quark propagator "prop" in full CG w/o deflation

Case of full statistics Yamazaki et al., PRD79, 114505 (2009)

In N<sub>conf</sub> = 356, N<sub>mes</sub>=4,

Total :  $356 \times 4 = 1424$  prop

• Case of AMA w/o deflation

Since calculation of  $O^{appx}$  need 1/50 prop, then in  $N_{conf}$ =81,  $N'_{mes}$ =32

Total:  $80 + 80 \times 32/50 = 131 \text{ prop} \Rightarrow 10 \text{ times fast}$ 

#### Case of AMA w/ deflation

When using 180 eigenmode, calculation of  $O^{appx}$  need 1/80 prop, but in this case the calculation of lowmode is ~1 prop/configs.

Deflated CG makes reduction of full CG to 1/3 prop, then

Total :  $80/3 + 80 \times 32/80 + 80 = 138 \text{ prop} \Rightarrow 10 \text{ times fast}$ Note that stored eigehmode is useful for other works.

20

### [slide from E. Shintani's poster]