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Prolegomena

The AuroraScience collaboration has been running an AURORA 15 TFlops prototype for a couple of years.
The machine is a highly dense, liquid cooled parallel system, based on Intel multi-core Xeon CPUs and
endowed with both an IB and a custom TORUS network. AuroraScience is an FBK/INFN joint initiative,
in collaboration with Eurotech.

While the evaluation process for a bigger machine has been tremendously slow, the machine development
has progressed continously. This expertize will not go into a bigger machine, but it will (hopefully) be part
of a bigger project, possibly taking advantage of Eurotech’s next step following Aurora (EURORA).

The main message of the talk is that

Aurora can substain fairly good performances in Lattice QCD
(we will report on the plain application of the Wilson Dirac operator).

OUTLINE

Single node performances

Multi-node MPI over IB performances

Multi-node TORUS performances

Part of the results were already available last year. In the meantime, TORUS version of

the code has improved quite a lot. We recollect results, to put them in a perspective.
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Our basic game: LQCD on a parallel machine

The basic building block of LQCD computations is the (Wilson)Dirac operator,
i.e. a (sparse) matrix acting on (multi-indeces) vectors.

ψ′αi (x) =
4X

µ=1

(U ij
µ(x)(1 + γαβ

µ )ψβj(x + µ̂) + U ij
µ(x − µ̂)(1− γαβ

µ )ψβj(x − µ̂))

U ij
µ(x) 3x3 complex matrices, residing on links

γαβ
µ 4x4 complex matrices, sparse (4 complex)

ψαi (x) 4x3 complex spin-color, residing on sites

All toghether, 1320 FP on (9x12+8x9 complex) 360 FP words per site.
All toghether, L3T sites in a lattice: HOW MANY on a COMPUTING NODE?
This choice defines communication vs computation requirements.
Needless to say, you do not make your choice once and for all.
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A game we have been playing for a while ...

LQCD dates back to 1974; in the mid of the 80’s, the LQCD community started
thinking of going parallel. What to look for?

In the end, since then we have been kept on looking at the same formula

T = max{ C

NP
,

I

NB
,

IR
BR

} =
C

NP
max{1,

IP

CB
,
IRNP

CBR
}

being C/N the computational cost per node, P the computational performance,
I/N the local exchange of information per node, B the memory bandwith, IR the
remote exchange of information and BR the corresponding bandwith.

A useful cartoon to have in mind with this respect
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T = max{ C
NP , I

NB , IR
BR
}: what is a node?

We said that C/N is the computational cost per node.

But what is a node on nowadays machines?

We have to live with intra- and inter- node parallelism. From the bandwith point
of view this means that not only BR (you go remote when you go through the IB
or TORUS network), but also B is a non trivial parameter to deal with.
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T = max{ C
NP , I

NB , IR
BR
}: looking better into local bandwiths

Aurora S– Node Card Architecture

SNB-EP (R)

PatsburgPatsburg

X Y Z Sync Tree

Barriers, jitter sync, etc

NIC

3D Torus:

ConnectX

Infiniband

Infiniband

USB, GbE, SATA3

QPI PCIe3 DMI 4x + PCIe3 4x

SNB-EP (R)

The Aurora node is a 2-CPU (Westmere or SandyBridge) SMP system.

Each CPU (we discuss W) has 6 cores (plus Hyperthreading! gain 1.2)

The 6 cores share an L3 cache memory and access DDR3.

To fecth from the other CPU one has to go through QPI!

One can optimize the size of the sub-lattice each core is in charge of ...

... only if one takes care of core affinity and memory binding!

F. Di Renzo (UNIPR) Lattice QCD on Aurora Lattice 2012 6 / 15



T = max{ C
NP , I

NB , IR
BR
}: carefully balancing the bandwiths

Examples of different performances for different node (sub-)lattice data layout and
sizes: Wilson Dirac operator application

Single node performances (Parma group)

SSE intrinsics

MPI/multithread:
1 rank per node + (HT) Pthread

optimization of L1/L2/L3 usage

core affinity and memory binding

Efficiency on multi-core CPUs: the Wilson Dirac operator on Aurora Michele Brambilla

3. Wilson Dirac operator

Our study refers to the Wilson Dirac operator

φ ′x = (m0+4r)φx− 12
4

∑
µ=1

{
Ux,µ (1− γµ)φx+µ̂ +U†

x−µ̂,µ(1− γµ)φx−µ̂
}

(3.1)

The computational effort required by the Dirac operator can be reduced observing [4] that
P±µ = 1± γµ is a spin projector; this reduces the effective number of spin components from 4
to 2. Only two components have to be multiplied by the corresponding U matrix; the other two
components are then reconstructed. To update each lattice site one has to collect the 8 neighbour
spinors (each made of 24 double). All in all, the algorithm performs 1396 flops operating on
∼ 1.5 KB (double precision) data for each site.

Data layout is SIMD friendly: space-time indices run slower while spin, color and real/imaginary
run faster. Such a layout allows to keep data required for the update of a site in contiguous memory
regions.

We exploited SIMD programming via SSE intrinsics, which appear more natural to implement
than assembly code. The resulting code reads something like

__m128d x2 = _mm_mul_pd(R2,(v+i)->whr[0].m);

v2 = _mm_addsub_pd(_mm_shuffle_pd(x2,x2,1), ...

Westmere processors introduce the new standard SSE4.2. In particular a new instruction turns
out to be very useful for our purposes: _mm_dp_pd computes the dot product between two SSE
registers. Exploiting this feature the dot product of two double precision complex numbers is one
instruction cheaper. However, the results presented in this proceeding does not exploit this feature:
if not carefully tuned it can give rise to bottlenecks in the pipeline.

4. Single board optimization

In the case of a single board we consider multithread parallelization via pthread. We made
our tests on different lattice sizes and considered different approaches, which we will describe
later in this section. We make use of the hyperthreading feature of Westmere processors: in this
way it is natural to accomodate up to 24 computing threads. Since not all the physical resources
of the CPU are doubled in the core, the expected speedup is less than 2: the measured value is∼1.2.

The most relevant issue in multithreading is to find out how to split the lattice between threads
in order to achieve the best performances. Partitioning is enforced taking care of core affinity and
memory binding. One makes sure that each thread will be executed on a precise core (physical
or virtual) and that all the memory resources will be allocated on the proper socket (inter-socket
communications are quite slow).
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Efficiency on multi-core CPUs: the Wilson Dirac operator on Aurora Michele Brambilla

S2

S1

x2,x3,x4

x1

Figure 1: Along the slowest di-
rection the lattice is sliced into
two big chunks across the two
sockets: this reduces the number
of inter-socket communications.

All in all, we want to reduce the number of times
one core has to retrieve data accessing memory resi-
dent on the other socket. In order to do that, we
slice the lattice into two large blocks along the slow-
est direction (x1) and bind each block to a different
socket. All the threads resident on socket 0 will take
care of one slice, while the threads resident on socket
1 will take care of the second slice (see the figure).
Only at the boundaries (with respect to the slowest direc-
tion) one needs to access memory resident on the other
socket.

To further improve efficiency, one also needs to take into account accesses to different cache
levels (even though L3 and L2 latency is low and bandwidth high). Our approach is to fit the fastest
running direction (x4) inside L2 cache. To perform this we tried two different approaches: a first
case named “interleaved”, the latter named “traditional”. Refer to Fig. 2:

• in the “interleaved” approach a thread takes many chunks, each of the minimum (1) size
along the second fastest direction (x3); in the figure (where 4 threads are at work) the resulting
stride is 4.

• in the “traditional” case each thread takes care of a single chunk, resulting in a non-trivial
size along the second fastest direction (x3).
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Figure 2: Different approaches to parallelization in the x3 direction: either one thread con work on many
smaller chunks or on a single bigger one.

Using hyperthreading, each couple of real+virtual cores take care of contiguous sublattices:
this is expected to improve cache efficiency since L1 and L2 caches are shared between the real
and virtual core (only registers are duplicated). The “traditional” approach shows the best perfor-
mances, with a peak of 52.6GFlops/board.

In both approaches the intra-node parallelization was along x1 (the slowest) and x3 (the second
fastest) directions. We have already commented on the choice of x1 (this optimizes accesses to
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Strong scaling of different variants of ETMC code: remote communications via
MPI on IB. (L. Scorzato)
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Figure 3.1.2. Example of strong scaling (left) and weak scaling (right). In the case of 
weak scaling, the lattice sizes in the legend refer to 32 nodes.

With the new algorithm we obtained up to 12% of the peak performance (which is 150 
Gflops / node-card).  In Figure 3.1.2 (left) we show an example of strong scaling, in which 
the problem size is kept fixed and distributed across an increasing number of nodes.  In  
the right panel of the same figure we show an example of weak scaling, in which the size 
of the problem in a single node is kept fixed while the full problem size grows 
proportionally to the number of nodes.  Weak scaling is nearly ideal, which means that the 
Infiniband network is still very efficient up to the size that we considered.  Strong scaling is 
sensitive to more effects, but it appears to be still quite good up to 32 nodes. The code can 
also use the 3D-network, but the present size of the Aurora prototype is too small to see 
the advantage. More details can be found in Ref. [4]

3.1.2 Production of Dynamical Nf=4 Gauge Configurations for the Computation of 
the Renormalization Factors

The computation of the renormalization factors (RF) is an essential ingredient for the 
precise computation of many physical quantities with Lattice QCD techniques. Since the 
RF are defined in the chiral limit, the best way to compute them non perturbatively is via 
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Figure 3.1.1 Performance gain of the time-split algorithm.

Playing around with data layout, i.e.

lattice vs sublattices

data ordering

one can gain quite a lot.
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T = max{ C
NP , I

NB , IR
BR
}: remote communication basics

A pragmatic bottom line:

One wants to hide commications by overlapping them with computations

Efficient node data layout is not immediately ready for remote data exchange

MPI solutions are well known (L. Scorzato)
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Use non-blocking
communications

MPI can pack & unpack
data for you
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A little detour: Aurora communications basic

To exploit the TORUS custom network (FTNW, by M. Pivanti, F.S. Schifano,
H. Simma), user programs can call both low level atn communication functions
(threads) ...

The AuroraScience Project DRAFT DRAFT DRAFT
AuroraScience Collaboration: INFN (Fe, MiB, Pr), ECT∗-FBK, Physics Dept. UNITN, DEI UNIPD, FEM, ATreP.

Introduction

AuroraScience is a joint-project of INFN and Provincia Autonoma di Trento.

Scientific goals:

! design of scalable massively parallel system for scientific computing,
following the technological paradigm of APE[1] systems and QPACE[2]

! optimization of scientific application codes:
LQCD, Fluid-Dynamics, nuclear physics

! study of multi-core programming strategies.

Technological goals:

! use of latest generation of Intel multi-core CPUs

! 3D-torus communication network

! low power consumption and compact engineering.

Node Card

A node-card hosts:

! 2 CPUs, 12 GB of RAM (6 GB per processor)

! 1 QDR 40-Gbit/s Infiniband adapter

! 1 FPGA Altera Stratix IV GX230

! 6 PMC-Sierra quad-link PHYs

Peak Perfomance (double-precision):

! 4-core Nehalem 50 Gflops (100 Gflops per node-card )

! 6-core Westmere 75 Gflops (150 Gflops per node-card )

! 8-core Sandy Bridge ∼ 200 Gflops, 2x cores + AVX 256-bit (400 Gflops per node-card )

The hardware elements of the Aurora machine are developed and engineered by Eurotech.

System Architecture

Node card with liquid-cooled cold-plate. Chassis hosting up to 16 node cards

The Aurora machine has the following interconnection networks:

! Infiniband switched network, for IO and general communication patterns:
! the root board hosts a 36-port infiniband switch
! 16 ports are connected to the node card of the chassis
! 20 ports are used for cabling a multi-chassis machine

! 3D-Torus network for nearest-neighbor communications

! Gigabit-ethernet switched network:
mainly used for boot, monitor and debugging

! a tree-like fast (25 MHz) network for global synchronizations à la APE

! a tree-like slow (10 MHz) network for monitoring and slow synchronizations

The 3D-Torus Network (TNW)

The TNW module interconnects the computing elements in a 3D-Torus topology.

! network processor implemented on FPGA Altera Stratix IV GX230
! 6 point-to-point links:

! physical level based on 10Gbit technology

! serial high-speed transmitter/receiver based on PMC-Sierra quadPHY devices

! link-raw-bandwidth: 1 GByte / link / direction, link-latency: ∼ 240 ns

! processor interface based on standard PCIe Gen2 16 lanes (4+4 GB/s)

! PCI Inbound Controller supports CPU memWrite and memRead operations

! PCI Outbound Controller supports FPGA memWrite and CplD operations

! FPGA resource usage is about 17% of logic-elements and 8% of memory.

TNW is used by QPACE[2] and AuroraScience projects, and has been developed by M. Pivanti, F. Schifano and H. Simma.

Communication Model

! Proc1 provides credit to NWP1

! Data are moved from Proc0 to NWP0

! NWP0 sends data to NWP1

! NWP1 checks data for errors and sends back a ACK/NACK

! NWP1 moves data to Proc1

! NWP1 notifies Proc1 that data are available

No explicit synchronization (barrier, rendez-vous) between Proc0 and Proc1

Low-level communication library
! "

int atnSend ( uint lid , uint cid , void ∗ txbuf , uint txoff , uint len ) ;

int atnCredit ( uint lid , uint cid , uint rxoff , uint len , uint nid ) ;

int atnPoll ( uint lid , uint cid , uint rxoff , uint len , void ∗ rxbuf , uint nid ) ;

int atnTest ( uint lid , uint cid , uint rxoff , uint len , void ∗ rxbuf , uint nid ) ;

#$ %

High-level communication library

TORUSlib module provides support to the ba-
sic communication patterns of the network in
a more friendly way, using a syntax that does
not need to go through the credit/send/poll
steps.

TORmpi module makes the network communi-
cation functionalities available in MPI-like syn-
tax, enabling the porting of general codes in an
easy and more direct way.

TNW Performance

Aggregate outbound communication bandwidth
with 1,2, and 3 links simultaneously sending and receiving (latency ≈ 1.93 usec).

Applications: LQCD

Computer simulations of Lattice QCD
(the theory of strong interactions
e.g. inside protons) is one of the
great challenges for massively parallel
supercomputers and requires a commu-
nication network with high bandwidth
and low latency.

In figure we report preliminary com-
munication benchmark with the kernel
routine of a Lattice QCD application.

The effective bandwidth measured here
takes into account all latencies and the
time for (un)packing the data.

Applications: Fluid-Dynamics

We ported a code for fluid-dynamics simulation in the turbulent
convective regime based on the Lattice Boltzmann (LB) technique.

Snapshots (temperature and vorticity) of the dynamics during the evolution
of a Rayleigh-Taylor instability (a cold fluid mixing with a hot fluid under the action of gravity).

Lattice/Node MLUPs GLOPS
512x-3600y 3.56 27.80
128x-6000y 3.78 29.52
1024x-1600y 3.86 30.10

Table: Sustained performance per node (DP)

References

[1] Computing for LQCD: apeNEXT, Computing in Science and Engineering, Vol. 8 n. 1, pp 18-29, 2006.

[2] QPACE: Quantum Chromodynamics Parallel Computing on the Cell,
Computing in Science and Engineering, Vol. 10 n. 6 pp. 46-54, 2008.

Presented by Marcello Pivanti pivanti@fe.infn.it http://web.infn.it/aurorascience

... and high level TORUS or torMPI communication functions (processes). All
toghether, we have a composite environment

torMPI mimics MPI

TORUS focuses nearest
neighbor communications
(3Dtorus + shared mem)

they both at the moment rely
on a proxy process

TORUS + MPI can be better
than MPI ...
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T = max{ C
NP , I

NB , IR
BR
}: going remote via TORUS

TORUS network basics

Credit/Send/Poll mechanism

Data should be aligned

Virtual Channels mechanism

Natural support of multithread

Basic ingredients of our Wilson Dirac Operator basic routine

We directly manage the (aligned) buffers for borders-exchange ...

... which are binded to relevant sockets (like all our data)

Hyperthreading is in place ...

... which is a natural playground for
overlapping computations and communications

Thread load allocation changes during execution

We go even/odd
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The final goal: Wilson Dirac operator kernel

ψ
′
αi (x) =

4X
µ=1

(Uij
µ(x)(1 + γαβµ )ψβj (x + µ̂) + Uij

µ(x − µ̂)(1 − γαβµ )ψβj (x − µ̂))

Prepare borders (*) and store them (half spinor!) into dedicated buffers

Half of the threads update the bulk, the remaining half exchange borders
(HT: no competition on FP resources!)

Notice that bulk is actually a bit non-trivial as a concept (one can re-allocate
threads, if needed)

Reconstruct border contributions (*)
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The final goal: it works pretty well

Wilson Dirac Operator: MPI/IB and atn/TORUS
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Peak performance percentage comparable with ETMC code on the BG/P

(but with bigger node granularity).

F. Di Renzo (UNIPR) Lattice QCD on Aurora Lattice 2012 12 / 15



NSPT - both IB and TORUS networks in place!

The master formula for inverting (order by order) the Dirac operator (ψ = M−1ξ):

ψ(0) = M(0)−1
ξ

ψ(1) = −M(0)−1
M(1)ψ(0)

ψ(2) = −M(0)−1
h
M(2)ψ(0) + M(1)ψ(1)

i
ψ(3) = −M(0)−1

h
M(3)ψ(0) + M(2)ψ(1) + M(1)ψ(2)

i
. . .

ψ(n) = −M(0)−1
n−1X
j=0

M(n−j)ψ(j)

We notice that

M(0)−1 is diagonal in momentum space, M(i) (almost) diagonal in configuration
space: go back and forth from momentum space via FFT! M(i) (brackets)
computations in configuration space; FFT before we apply M(0)−1 and inverse FFT
to make the ψ(i) available to following orders computations;

once ψ(i) has been computed, advance in the computation of the (configuration
space) brackets! computations can overlap;

torus network for configuration space, IB network can substain FFT.
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NSPT - an example that profits from both networks

The overall MPI application has two communicators (FFT and TORUS comm.).

On each nodecard, we have three MPI processes, or ranks (in MPI jargon).

Two ranks on each nodecard belong to the MPI communicator; they are single
thread processes, residing on two physical cores (one per socket).

The third rank on each nodecard is a multi-thread process, taking the ten residual
cores available on the nodecard. Eight threads in charge of computations; one core
in charge of communications on the torus network; one core in charge of the
(RDMA) MPI communications which cross-exchange data FFT < − > TORUS.

FFTW communicator
 2 rank/nodecard
 1 rank/socket
 1 core/rank

TORUS communicator
 1 rank/nodecard
 5 threads/socket
 1 core/thread

SOCKET 1
(6 cores)

SOCKET 0
(6 cores)

Nodecard
2 x Westmere SOCKET 0 SOCKET 1

}

}
}

FFTW
2 rank MPI

DATA
TRANSFER
1 thread 3D Torus
1 thread IB RDMA

CALC
8 threads

3DT IB

F. Di Renzo (UNIPR) Lattice QCD on Aurora Lattice 2012 14 / 15



Conclusions

Aurora has proven to be a quite effective architecture for Lattice QCD.
Intra- and inter- node parallelism is a challenge for nowadays parallel
architectures.
More can be probably gained from AVX set of instructions: how much
of what we showed can be transferred from multi-core to many-core
architectures? (EURORA on our mind)
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