Playing with the kinetic term in the HMC

Alberto Ramos <alberto.ramos@desy.de>

NIC, DESY Zeuthen.

June 26, 2012

Special thanks to

- Patrick Fritzsch
- Laurent Lellouch
- Marina Marinkovic
- Alfonso Sastre
- Hubert Simma
- Rainer Sommer
- Francesco Virotta

Hybrid Monte Carlo

To sample the distribution $\propto e^{-{\it S}[U]} dU$ we use

$$\propto e^{-rac{\pi^2}{2}-S[U]}dUd\pi=e^{-H(\pi,U)}dUd\pi$$

• Generate random momenta $\pi_{\mu}(x) \sim \mathcal{N}(0, 1)$.

2 Integrate e.o.m from MD time $\tau = 0$ to $\tau = \tau_L$

$$\begin{aligned} \dot{\pi}_{\mu}(x) &= -\frac{\delta H(\pi, U)}{\delta U_{\mu}(x)} = F_{\mu}(x) \\ \dot{U}_{\mu}(x) &= \frac{\delta H(\pi, U)}{\delta \pi_{\mu}(x)} = \pi_{\mu}(x) U_{\mu}(x) \end{aligned}$$

 $\textbf{O} \text{ Accept with probability } \propto \min \left\{ 1, e^{-\Delta H} \right\}.$

 $U^{(1)}
ightarrow U^{(2)}
ightarrow \ldots$ are samples of the equilirium distribution $\propto e^{-\mathcal{S}[U]} dU$

Equilibrium properties unchanged by arbitrary kinetic term

$$H(\pi, U) = K(\pi) + S[U]$$

The role of the kinetic term

Kinetic term \implies Distribution for $\dot{Q} \implies$ Motion in phase space. $H(P,Q) = \frac{P^2}{2} + \dots$ $\dot{P} = F(Q)$ $\dot{Q} = K'(P) = P$ 0.4 0.35 0.3 0.25 • $\dot{Q} \sim \mathcal{N} \propto e^{-P^2/2}$ (equilibrium 0.2 distribution). 0.15 0.1 • 25% $\dot{Q} \in (-0.25, 0.25)$. 0.05 • $38\% \dot{Q} \in (-0.5, 0.5).$

- Large $\dot{Q} \Longrightarrow$ small acceptance.
- Small $\dot{Q} \Longrightarrow$ large autocorelations.

Lorentz distribution

$$H(P,Q) = \log\left(1+rac{P^2}{\gamma^2}
ight) + S(Q)$$

Distribution function

$$f(P)dP = rac{\gamma dP}{\pi[\gamma^2 + P^2]}$$

- No mean, no variance (heavy tailed distribution).
- e.o.m

$$\dot{Q} = \frac{2p}{\gamma^2 + p^2}$$

- Avoid small motion. $\mathcal{P}(-0.5 \leq \dot{Q} \leq 0.5) \approx 0.26$.
- On average move more without large motions. Cutoff in Q.
- $\langle E \rangle$ twice bigger. Hepl with barriers?

Implementation in SU(2)

The Hamiltonian with $U_{\mu}(x) \in SU(2)$ and $\pi_{\mu}(x) \in \mathfrak{su}(2)$

$$H(\pi, U) = \sum_{x,\mu,a} \log \left[1 + \left(\pi_{\mu}^{a}(x)/\gamma \right)^{2} \right] + \frac{\beta}{2} \sum_{p} Tr(1 - U_{p})$$

Straightforward implementation

Implementation in SU(2)

Numerical integration of e.o.m.

Basic integrators

$$\begin{split} \mathcal{I}_{\pi}(\epsilon) &: (\pi, U) \longrightarrow (\pi + \epsilon F[U], U) \\ \mathcal{I}_{U}(\epsilon) &: (\pi, U) \longrightarrow (\pi, e^{\epsilon Z[\pi]}U) \end{split}$$

•
$$F[U]$$
 unchanged. $Z[\pi] \in \mathfrak{su}(2)$

$$Z^{a}[\pi] = \frac{2\pi_{\mu}^{a}(x)}{\gamma^{2} + (\pi_{\mu}^{a}(x))^{2}}$$

• Any desired scheme (Leapfrog, Omelyan, 4th order integrators, ...)

$$\mathcal{L}(\epsilon, N) = [\mathcal{I}_{\pi}(\epsilon/2)\mathcal{I}_{U}(\epsilon)\mathcal{I}_{\pi}(\epsilon/2)]^{N}$$

Accept-Reject based on $\Delta H(\pi, U)$ with

$$H(\pi, U) = \sum_{x,\mu,a} \log \left[1 + \left(\pi_{\mu}^{a}(x)/\gamma \right)^{2} \right] + \frac{\beta}{2} \sum_{p} Tr(1 - U_{p})$$

Comparison between HMC and HMCL

Framework

- SU(2) pure gauge theory.
- Two volumes 12^4 and 16^4 .
- Three values of the coupling $\beta = 2.4, 2.5, 2.6$.
- Scales a ≈ 0.12, 0.08, 0.06 fm.

Tuning

- Choose $\gamma \approx 0.8 \Longrightarrow$ same P_{acc}
- Omelyan integrator with $\lambda = 0.185$ [Omelyan, Mryglod, Folk, '03].

	$V = 12^{4}$	$V = 16^4$	
N _{steps}	20	25	
ϵ	0.1	0.08	
$ au_L$	2	2	
P _{acc}	83% - 88%	81%-87%	
N _{msm}	$6 imes 10^5$	10 ⁵	

Observables

Wilson loops

- $W_{1\times 1}$: Plaquette.
- W_{2x2}
- W_{4×4}

Topological

Under-relaxed cooling

$$U_{\mu}(x)
ightarrow c\left(lpha U_{\mu}(x) + \sum_{
u
eq \mu} M^{\dagger}_{\mu
u}(x)
ight)$$

- Repeat for 60 steps (lpha= 2) \longrightarrow U_{sm}
- Measure Q_{sm} , Q_{sm}^2 (Clover definition).

History examples: $V = 12^4, \beta = 2.5$

700

700

800

800

We have

- Same computational cost
- Same statistics

Compare

- τ_{int} For our observables
- Error in the quantities

We have

- Same computational cost
- Same statistics

Figure: Plaquette for $V = 12^4, \beta = 2.6$

Compare

¢

- τ_{int} For our observables
- Error in the quantities
- Autocorrelation function

$$\rho_{O}(t) = \frac{\langle (O(0) - \overline{O})(O(t) - \overline{O}) \rangle}{\langle (O(0) - \overline{O})^{2} \rangle}$$

$$au_{_{int}}^{(O)}$$
 time to decorrelate

$$\sigma_O = \sqrt{2\tau_{int}\frac{V(O)}{N}}$$

- $\tau_{int} = 3.36(10)$
- $\tau_{int} = 2.191(53)$
- Error 23% smaller.

We have

- Same computational cost
- Same statistics

Figure: Plaquette for $V = 12^4, \beta = 2.6$

Compare

- τ_{int} For our observables
- Error in the quantities
- Autocorrelation function

$$\rho_{O}(t) = \frac{\langle (O(0) - \overline{O})(O(t) - \overline{O}) \rangle}{\langle (O(0) - \overline{O})^{2} \rangle}$$

•
$$\tau_{int}^{(O)}$$
 time to decorrelate

$$\sigma_O = \sqrt{2\tau_{int}\frac{V(O)}{N}}$$

- $\tau_{int} = 3.36(10)$
- $\tau_{int} = 2.191(53)$
- Error 23% smaller.

We have

- Same computational cost
- Same statistics

Compare

- τ_{int} For our observables
- Error in the quantities
- Bin analysis with 2000 bootstrap samples.
- Use a large bin size (*Nb* = 200). With small statistics probably need different approach [Schaefer, Sommer,

Virotta, '10].

- Results:
 - HMC : (*Tr*(*U_p*)) = 1.3401848(75)
 - HMCL: $\langle Tr(U_p) \rangle = 1.3401944(61)$

Figure: Plaquette for $V = 12^4, \beta = 2.6$

We have

- Same computational cost
- Same statistics

Figure: Plaquette for $V = 12^4$, $\beta = 2.6$

• τ_{int} For our observables Error in the guantities

Compare

- Bin analysis with 2000 bootstrap samples.
- Use a large bin size (Nb = 200). With small statistics probably need different approach [Schaefer, Sommer,

Virotta, '10].

- Results:
 - HMC · $\langle Tr(U_p) \rangle = 1.3401848(75)$
 - HMCL: $\langle Tr(U_p) \rangle = 1.3401944(61)$

Figure: Q^2 for $V = 12^4, \beta = 2.5$

- Normalized autocorrelation function.
- HMC decorrelate faster than HMCL

Figure: Q^2 for $V = 12^4$, $\beta = 2.5$

- Almost double τ_{int}
 - $\tau_{int} = 12.3(7)$

 - $\tau_{int} = 24(2)$ 40% bigger error for HMCL

Figure: Q^2 for $V = 12^4$, $\beta = 2.5$

Figure: Q^2 for $V = 12^4$, $\beta = 2.5$

Very local quantities tend to decorrelate faster with HMCL, but global ("slow") quantities tend to decorrelate slower.

•
$$\tau_{int} = 5.50(52)$$

• $\tau_{int} = 8.3(1.0)$
• HMC :
 $\langle Tr(W_{4\times 4}) \rangle = 4.8031(23) \times 10^{-2}$
• HMCL:
 $\langle Tr(W_{4\times 4}) \rangle = 4.8060(27) \times 10^{-2}$

Figure: $W_{4\times 4}$ for $V = 16^4$, $\beta = 2.5$

Try with open boundary conditions

Is this a consequence of the topological modes? \Rightarrow openBC [Lüscher, Schaefer, '11, '12].

Very local quantities tend to decorrelate faster with HMCL, but global ("slow") quantities tend to decorrelate slower.

•
$$\tau_{int} = 5.50(52)$$

• $\tau_{int} = 8.3(1.0)$
• HMC :
 $\langle Tr(W_{4\times 4}) \rangle = 4.8031(23) \times 10^{-2}$
• HMCL:
 $\langle Tr(W_{4\times 4}) \rangle = 4.8060(27) \times 10^{-2}$

Figure: $W_{4\times 4}$ for $V = 16^4$, $\beta = 2.5$

Try with open boundary conditions

Is this a consequence of the topological modes? \Rightarrow openBC [Lüscher, Schaefer, '11, '12].

Very local quantities tend to decorrelate faster with HMCL, but global ("slow") quantities tend to decorrelate slower.

•
$$\tau_{int} = 5.50(52)$$

• $\tau_{int} = 8.3(1.0)$
• HMC :
 $\langle Tr(W_{4\times4}) \rangle = 4.8031(23) \times 10^{-2}$
• HMCL:
 $\langle Tr(W_{4\times4}) \rangle = 4.8060(27) \times 10^{-2}$

Figure: $W_{4\times 4}$ for $V = 16^4$, $\beta = 2.5$

Try with open boundary conditions

Is this a consequence of the topological modes? \Rightarrow openBC [Lüscher, Schaefer, '11, '12].

Very local quantities tend to decorrelate faster with HMCL, but global ("slow") quantities tend to decorrelate slower.

•
$$\tau_{int} = 5.50(52)$$

• $\tau_{int} = 8.3(1.0)$
• HMC :
 $\langle Tr(W_{4\times 4}) \rangle = 4.8031(23) \times 10^{-2}$
• HMCL:
 $\langle Tr(W_{4\times 4}) \rangle = 4.8060(27) \times 10^{-2}$

Figure: W_{4x4} for $V = 16^4, \beta = 2.5$

Try with open boundary conditions

Is this a consequence of the topological modes? \Rightarrow openBC [Lüscher, Schaefer, '11, '12].

Periodic vs. Open boundary conditions $V = 12^4, \beta = 2.5$

$W_{4\times4}$ for periodic vs. open boundary conditions

HMCL

Some numbers with open boundary conditions

$V = 12^4$	$\beta = 2.4$	$\beta = 2.5$	$\beta = 2.6$.alg.
$W_{1 \times 1}$	0.595398(10)	0.6175535(81)	0.6365164(76)	HMC
	0.5953973(97)	0.6175420(79)	0.6364912(65)	HMCL
$W_{2\times 2}$	0.181980(19)	0.212554(16)	0.239240(14)	HMC
	0.181980(21)	0.212542(20)	0.239196(16)	HMCL
W _{4×4}	0.0079110(77)	0.014772(11)	0.022583(12)	HMC
	0.0079129(90)	0.014777(13)	0.022552(15)	HMCL
Q ²	1.334(11)	0.4849(71)	0.1409(39)	HMC
	1.336(14)	0.4850(87)	0.1453(54)	HMCL

Conclusions

- Lorentzian kinetic term allows control on $\dot{Q} \Longrightarrow$ Choose motion in phase space.
- Comparison of two different motions in phase space by changing the kinetic term in the HMC
 - HMCL: All coordinates moves similarly, avoiding "small" and "large" updates.
 - HMC: Mix of large and small changes in the coordinates.
- Fast modes decorrelate faster for HMCL, slow modes decorrelate faster with HMC.
- Except for very local quantities, HMC performs better. [-20%, +40%] in final errors for observables.
- $\bullet\,$ Tests with open boundary conditions: slow modes are moved away from $\lambda_0=1.$
- Effect of open BC visible even in error estimation of local quantities.
- Questions:
 - Different γ 's ?
 - What happens with fermions ?