Non-Perturbative Renormalization for Staggered Fermions

Jangho Kim in collaboration with Weonjong Lee

SWME Collaboration

Lattice 2012 in Cairns Convention Centre, Cairns, Australia

Jangho Kim (SWME Collaboration)

NPR for Staggered Fermion

Lattice 2012 1 / 15

Introduction [PRL 2012 SWME]

Error Budget for <i>B_K</i> using SU(2) SChPT fitting		
cause	Error(%)	Memo
statistics	0.6	
matching factor	4.4	$\Delta B_{K}^{(2)}(U1)$
discretization	1.9	diff. of constant and constrained fits
X-fits	0.33	varying Bayesian priors (S1)
Y-fits	0.07	diff. of linear and quadratic (C3)
<i>am</i> _l extrap	1.5	diff. of (C3) and linear extrap
<i>am₅</i> extrap	1.3	diff. of (C3) and linear extrap
finite volume	0.5	diff. of V=inf fit and FV fit
<i>r</i> ₁	0.14	r_1 error propagation (C3)
f_{π}	0.4	132 MeV vs. 124.4 MeV

The biggest error comes from the matching factor. NPR can reduce the matching factor error.

Jangho Kim (SWME Collaboration)

NPR for Staggered Fermion

Acceleration of Landau gauge fixing using GPUs

- Landau gauge fixing is needed to do the non-perturbative renormalization.
- Landau gauge fixing is very slow.
- \bullet It needs about 10 days for one $28^3 \times 96$ gauge configuration using 2 CPUs.
- Using GPUs, Landau gauge fixing speed is about 80 times faster than CPUs.
- It needs only 3 hours for one $28^3 \times 96$ gauge configuration using 2 GPUs.

Mass Renormalization

- We generate staggered fermion propagators using momentum source.
- Momentum source : $h = e^{-i(\tilde{p} + \pi_B)x} \delta_{cc'}$
- \tilde{p} is the momentum in reduced Brillouin zone.

$$p \in \left(-rac{\pi}{a}, rac{\pi}{a}
ight]^4, \qquad ilde{p} \in \left(-rac{\pi}{2a}, rac{\pi}{2a}
ight]^4, \qquad p = ilde{p} + \pi_B$$

where $\pi_B (\equiv \frac{\pi}{a}B)$ is cut-off momentum in hypercube.

- a : lattice spacing.
- B : vector in hypercube. Each element is 0 or 1
- c, c' : color index.
- We can obtain the propagator in momentum space after Fourier transform.

The inverse free propagator is

$$[\widetilde{S}^{f}(\widetilde{p})]_{AB;cc'}^{-1;free} = [\sum_{\mu} \frac{i}{a} \sin(\widetilde{p}_{\mu}a) \overline{\overline{(\gamma_{\mu} \otimes 1)}}_{AB} + m_{0}^{f} \overline{\overline{(1 \otimes 1)}}_{AB}]_{cc'}$$

where m_0^f is bare mass. The inverse bare propagator is

$$\begin{split} [\widetilde{S}^{f}(\widetilde{p})]_{AB;cc'}^{-1} &= [(1+\Sigma_{S})m_{0}^{f}\overline{(1\otimes1)}_{AB} + (1+\Sigma_{V})\sum_{\mu}\sin{(\widetilde{p}_{\mu}a)}\overline{(\overline{\gamma_{\mu}\otimes1})}_{AB} \\ &+ \Sigma_{T}m_{0}^{f}\sum_{\mu\neq\nu}\sin{(\widetilde{p}_{\mu}a)}(\sin{(\widetilde{p}_{\nu}a)})^{3}\overline{(\overline{\gamma_{\mu\nu}\otimes1})}_{AB} \\ &+ \Sigma_{A}\sum_{\mu\neq\nu\neq\rho}\sin{(\widetilde{p}_{\mu}a)}(\sin{(\widetilde{p}_{\nu}a)})^{3}(\sin{(\widetilde{p}_{\rho}a)})^{5}\overline{(\overline{\gamma_{\mu\nu\rho}\otimes1})}_{AB} \\ &+ \Sigma_{P}m_{0}^{f}\sum_{\mu\neq\nu\neq\rho\neq\sigma}\sin{(\widetilde{p}_{\mu}a)}(\sin{(\widetilde{p}_{\nu}a)})^{3}(\sin{(\widetilde{p}_{\rho}a)})^{5}(\sin{(\widetilde{p}_{\sigma}a)})^{7}\overline{(\overline{\gamma_{\mu\nu\rho\sigma}\otimes1})}_{AB}]_{cc} \end{split}$$

[NPR for Improved Staggered Bilinears, Lytle and Sharpe]

Jangho Kim (SWME Collaboration)

NPR for Staggered Fermion

Lattice 2012 5 / 15

Figure : self-energy diagrams

The renormalized quark propagator is

$$\widetilde{S}_R^f(\widetilde{p}) = Z_q \widetilde{S}_0^f(\widetilde{p})$$

and the renormalized quark mass is

$$m_R = Z_m m_0$$

The RI-MOM scheme prescription is

$$\widetilde{S}_{R}^{f}(\widetilde{p}) = \widetilde{S}_{tree}^{f}(\widetilde{p})$$

Jangho Kim (SWME Collaboration)

★ ∃ >

The renormalized propagator is

$$\begin{split} \widetilde{S}_{R}^{f}(\widetilde{p}) &= \frac{1}{\sum_{\mu} \frac{i}{a} \sin\left(\widetilde{p}_{\mu}a\right) \overline{(\overline{\gamma_{\mu} \otimes 1})}_{AB} + m_{R}^{f} \overline{(\overline{1 \otimes 1})}_{AB}} \\ &= \frac{Z_{q}}{(1 + \Sigma_{V})} \left(\frac{1}{\sum_{\mu} \frac{i}{a} \sin\left(\widetilde{p}_{\mu}a\right) \overline{(\overline{\gamma_{\mu} \otimes 1})}_{AB} + \frac{(1 + \Sigma_{S})}{(1 + \Sigma_{V})} \frac{m_{R}^{f}}{Z_{m}} \overline{(\overline{1 \otimes 1})}_{AB} + \dots} \right) \end{split}$$

Therefore

$$Z_q = (1 + \Sigma_V)$$

- $(1 + \Sigma_S)$

$$Z_m = \frac{(1+\Sigma_S)}{(1+\Sigma_V)}$$

Jangho Kim (SWME Collaboration)

NPR for Staggered Fermion

Lattice 2012 8 / 15

(a)

If we use the vector projection operator $\hat{\mathbb{P}}^w = \overline{(\gamma_\nu \otimes 1)}_{BA} \delta_{c'c}$ and sum over A and B, trace on color indices.

$$\sum_{A,B} Tr[[\tilde{S}^{f}(\tilde{p})]_{AB;cc'}^{-1} \hat{\mathbb{P}}^{w}_{BA;c'c}]$$
$$= 48(1 + \Sigma_{V})\frac{i}{a}\sin(\tilde{p}_{\nu}a)$$

We know the values of all terms except Σ_V , so we can obtain Σ_V .

If we use the scalar projection operator $\hat{\mathbb{P}}^m = \overline{(1 \otimes 1)}_{BA} \delta_{c'c}$, we can obtain Σ_S , which is related to Z_m .

$$\sum_{A,B} Tr[[\widetilde{S}^{f}(\widetilde{p})]_{AB;cc'}^{-1} \hat{\mathbb{P}}^{m}_{BA;c'c}]$$
$$= 48(1 + \Sigma_{S})m_{0}^{f}$$

Jangho Kim (SWME Collaboration)

Lattice 2012 9 / 15

Wave function renormalization factor (Preliminary)

- $20^3 \times 64$ MILC coarse lattice $(am_{\ell}/am_s = 0.01/0.05)$
- We are using mixed action (asqtad sea + HYP valence).
- We checked that all the results are the same using Dirac and Weyl conventions.

Jangho Kim (SWME Collaboration)

Analysis of Γ_S (Preliminary)

•
$$\Gamma_{S} = \frac{1}{48} Tr(S^{-1}(\tilde{p})\hat{\mathbb{P}}^{m}), \quad \hat{\mathbb{P}}^{m} = \overline{(1 \otimes 1)}_{BA} \delta_{c'c}$$

• $\Gamma_{S} = Z_{q}(Z_{m}m_{0} + C_{1} \frac{\langle \chi \overline{\chi} \rangle}{\tilde{p}^{2}}) + O(\tilde{p}^{2})$

3

Analysis of Σ_S (Preliminary)

•
$$1 + \Sigma_S = \frac{\Gamma_S}{m_0}$$

• We are in the middle of analysis.

Mass Renormalization

Analysis of Σ_T (Preliminary)

Lattice 2012 13 / 15

э

A.

Analysis of Σ_A (Preliminary)

• We are working on the analysis of Σ_A .

Conclusion

- Using GPUs, we performed Landau gauge fixing over 500 gauge configurations in a week.
- We are in the middle of analysis of wave function renormalization factor Z_q , mass renormalization factor Z_m and the matching factors of bilinear and four-fermion operators relavent for B_K and its BSM operators.

イロト 不得下 イヨト イヨト