Perturbative subtraction of lattice artefacts in the computation of renormalization constants

M. Constantinou¹, M. Costa¹, M. Göckeler², R. Horsley³, H. Panagopoulos¹, H. Perlt⁴, P. E. L. Rakow⁵, G. Schierholz⁶ and A. Schiller⁴

¹University of Cyprus, ²Universität Regensburg, ³University Edinburgh, ⁴Universität Leipzig, ⁵University Liverpool, ⁶DESY

Lattice 2012, Cairns, Australia, June 24 - June 29, 2012

Introduction

- 2 Renormalization constants in RGI scheme
- Operators
- 4 Subtraction of all lattice artefacts in one-loop
- 5 Subtraction of $O(a^2p^2)$ lattice artefacts in one-loop

6 Summary

< 🗇 > < 🖻 >

Introduction

Renormalization constants in RGI scheme

3 Operators

- 4 Subtraction of all lattice artefacts in one-loop
- 5 Subtraction of $O(a^2p^2)$ lattice artefacts in one-loop

6 Summary

Introduction

2 Renormalization constants in RGI scheme

Operators

4 Subtraction of all lattice artefacts in one-loop

Subtraction of $O(a^2p^2)$ lattice artefacts in one-loop

6 Summary

Introduction

2 Renormalization constants in RGI scheme

3 Operators

5 Subtraction of $O(a^2p^2)$ lattice artefacts in one-loop

6 Summary

Introduction

2 Renormalization constants in RGI scheme

3 Operators

5 Subtraction of $O(a^2p^2)$ lattice artefacts in one-loop

Summary

Introduction

2 Renormalization constants in RGI scheme

Operators

5 Subtraction of $O(a^2p^2)$ lattice artefacts in one-loop

Summary

• Connection between "lattice world" and "real world": renormalization constants *Z*

- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artefacts

< ロ > < 同 > < 回 > < 回 >

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artefacts

< ロ > < 同 > < 回 > < 回 >

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artefacts

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artefacts

< ロ > < 同 > < 回 > < 回 >

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artefacts

< ロ > < 同 > < 回 > < 回 >

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artefacts

< D > < P > < P > < P > < P</pre>

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artefacts

< D > < P > < P > < P > < P</pre>

We define the so-called renormalization group invariant (RGI) operator as (see e.g., *Göckeler et al., PR D82 (2010) 114511)*

$$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$$

with

$$\Delta Z^{\mathcal{S}}(M) = \left(2\beta_0 \frac{g^{\mathcal{S}}(M)^2}{16\pi^2}\right)^{-(\gamma_0/2\beta_0)} \exp\left\{\int_0^{g^{\mathcal{S}}(M)} dg'\left(\frac{\gamma^{\mathcal{S}}(g')}{\beta^{\mathcal{S}}(g')} + \frac{\gamma_0}{\beta_0 g'}\right)\right\}$$

and

$$\boldsymbol{Z}^{\mathrm{RGI}}(\boldsymbol{a}) = \Delta \, \boldsymbol{Z}^{\mathcal{S}}(\boldsymbol{M}) \, \boldsymbol{Z}^{\mathcal{S}}_{\mathrm{bare}}(\boldsymbol{M}, \boldsymbol{a})$$

 g^{S} , γ^{S} and β^{S} are the coupling constant, the anomalous dimensions and the β -function in scheme S

< ロ > < 同 > < 三 > < 三 >

Knowing Z^{RGI} and $\Delta Z^{\mathcal{S}}(M)$ one can compute \mathcal{O} in any scheme \mathcal{S} and at any scale M

On the lattice a widely used scheme is RI'-MOM:

$$Z_q^{-1} Z_{bare}^{\mathrm{RI'}-\mathrm{MOM}} \frac{1}{12} \operatorname{tr} \left(\Gamma(p) \, \Gamma_{\mathrm{Born}}(p)^{-1} \right) = 1$$

with

$$Z_q(p) = \frac{\operatorname{tr}\left(-i\sum_{\lambda}\gamma_{\lambda}\sin(ap_{\lambda})aS^{-1}(p)\right)}{12\sum_{\lambda}\sin^2(ap_{\lambda})}$$

 Γ - amputated Green function of $\mathcal O$ S - quark propagator

< D > < P > < P > < P > < P</pre>

Knowing Z^{RGI} and $\Delta Z^{\mathcal{S}}(M)$ one can compute \mathcal{O} in any scheme \mathcal{S} and at any scale M

On the lattice a widely used scheme is RI'-MOM:

$$Z_q^{-1} Z_{bare}^{\mathrm{RI'}-\mathrm{MOM}} \, rac{1}{12} \, \mathrm{tr} \left(\Gamma(\rho) \, \Gamma_{\mathrm{Born}}(\rho)^{-1}
ight) = 1$$

with

$$Z_q(p) = \frac{\operatorname{tr}\left(-i\sum_{\lambda}\gamma_{\lambda}\sin(ap_{\lambda})aS^{-1}(p)\right)}{12\sum_{\lambda}\sin^2(ap_{\lambda})}$$

- Γ amputated Green function of ${\cal O}$
- S quark propagator

< D > < P > < P > < P > < P</pre>

 RI'-MOM is not covariant for most operators → not suitable for computing anomalous dimensions

• Two-step procedure: RG'-MOM \rightarrow *MOM*gg \rightarrow RGI

• $Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOMgg}}(M = \mu_p) Z^{MOMgg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$

- $\Delta Z^{\widetilde{MOMgg}}$ and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artefacts!
- Artefacts under control → determination of Z^{RGI} with better accuray!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- RI'-MOM is not covariant for most operators → not suitable for computing anomalous dimensions
- Two-step procedure: RG'-MOM $\rightarrow \widetilde{\textit{MOM}}$ gg \rightarrow RGI

• $Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOMgg}}(M = \mu_p) Z^{MOMgg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$

- ΔZ^{MOMgg} and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artefacts!
- Artefacts under control \rightarrow determination of Z^{RGI} with better accuray!

・ロト ・同ト ・ヨト ・ヨト

- RI'-MOM is not covariant for most operators → not suitable for computing anomalous dimensions
- Two-step procedure: RG'-MOM $\rightarrow \widetilde{\textit{MOM}}$ gg \rightarrow RGI

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

- ΔZ^{MOMgg} and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artefacts!
- Artefacts under control \rightarrow determination of Z^{RGI} with better accuray!

- RI'-MOM is not covariant for most operators → not suitable for computing anomalous dimensions
- Two-step procedure: RG'-MOM $\rightarrow \widetilde{\textit{MOM}}$ gg \rightarrow RGI

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI}'-\text{MOM}}(M = \mu_p) Z^{\text{RI}'-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

• $\Delta Z^{\widetilde{MOM}gg}$ and $Z^{\widetilde{MOM}gg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT

- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artefacts!
- Artefacts under control \rightarrow determination of Z^{RGI} with better accuray!

ヘロト 人間ト ヘヨト ヘヨト

- RI'-MOM is not covariant for most operators → not suitable for computing anomalous dimensions
- Two-step procedure: RG'-MOM $\rightarrow \widetilde{\textit{MOM}}$ gg \rightarrow RGI

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI}'-\text{MOM}}(M = \mu_p) Z^{\text{RI}'-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

- $\Delta Z^{\widetilde{MOM}gg}$ and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'-MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artefacts!
- Artefacts under control → determination of Z^{RGI} with better accuray!

・ロト ・同ト ・ヨト ・ヨト

- RI'-MOM is not covariant for most operators → not suitable for computing anomalous dimensions
- Two-step procedure: RG'-MOM $\rightarrow \widetilde{\textit{MOM}}$ gg \rightarrow RGI

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI}'-\text{MOM}}(M = \mu_p) Z^{\text{RI}'-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

- $\Delta Z^{\widetilde{MOM}gg}$ and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\rm bare}^{\rm RI'-MOM}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artefacts!
- Artefacts under control → determination of Z^{RGI} with better accuray!

(日)

- RI'-MOM is not covariant for most operators → not suitable for computing anomalous dimensions
- Two-step procedure: RG'-MOM $\rightarrow \widetilde{\textit{MOM}}$ gg \rightarrow RGI

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI}'-\text{MOM}}(M = \mu_p) Z^{\text{RI}'-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

- $\Delta Z^{\widetilde{MOM}gg}$ and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\rm bare}^{\rm RI'-MOM}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artefacts!
- Artefacts under control → determination of Z^{RGI} with better accuray!

(ロ) (同) (ヨ) (ヨ) 三日

Operators

Operators under consideration

Operator	notation	Repr.	Members
ū d	\mathcal{O}^{S}	$\tau_{1}^{(1)}$	\mathcal{O}^{S}
$ar{u}\gamma_5d$	\mathcal{O}^{P}	$\tau_{4}^{(1)}$ $\tau_{1}^{(4)}$	\mathcal{O}^{P}
$ar{m{u}}\gamma_\mum{d}$	$\mathcal{O}_{\mu}^{\mathrm{V}}$	$\tau_{1}^{(4)}$	$\mathcal{O}_1^V, \mathcal{O}_2^V, \mathcal{O}_3^V, \mathcal{O}_4^V$
$ar{u}\gamma_5\gamma_\mu d$	$\mathcal{O}^{\mathrm{A}}_{\mu}$	$\begin{array}{c c} \tau_4^{(4)} \\ au_4^{(6)} \\ au_1^{(6)} \end{array}$	$\mathcal{O}_1^A, \mathcal{O}_2^A, \mathcal{O}_3^A, \mathcal{O}_4^A$
$ar{m{u}}\sigma_{\mu u}m{d}$	$\mathcal{O}_{\mu u}^{\mathrm{T}}$	$\tau_{1}^{(6)}$	$\mathcal{O}_{12}^{\mathrm{T}}, \mathcal{O}_{13}^{\mathrm{T}}, \mathcal{O}_{14}^{\mathrm{T}}, \mathcal{O}_{23}^{\mathrm{T}}, \mathcal{O}_{24}^{\mathrm{T}}, \mathcal{O}_{34}^{\mathrm{T}}$
$\bar{u} \gamma_{\mu} \stackrel{\leftrightarrow}{D_{\nu}} d$	$\mathcal{O}_{\mu u} ightarrow \mathcal{O}_{V_{2,a}}$	$ au_{3}^{(6)}$	$\mathcal{O}_{\{12\}}, \mathcal{O}_{\{13\}}, \mathcal{O}_{\{14\}},$
	,		$\mathcal{O}_{\{23\}}, \mathcal{O}_{\{24\}}, \mathcal{O}_{\{34\}}$
$\bar{u} \gamma_{\mu} \stackrel{\leftrightarrow}{D_{\nu}} d$	$\mathcal{O}_{\mu u} ightarrow\mathcal{O}_{m{v_{2,b}}}$	$\tau_{1}^{(3)}$	$1/2(\mathcal{O}_{11} + \mathcal{O}_{22} - \mathcal{O}_{33} - \mathcal{O}_{44}),$
	, -		$1/\sqrt{2}(\mathcal{O}_{33}-\mathcal{O}_{44}),$
			$1/\sqrt{2}(\mathcal{O}_{11}-\mathcal{O}_{22})$

Table: Operators and their representations as discussed.. $\{..\}$ means toal symmetrization.

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- If dimension of multiplet > 1 \rightarrow trace depends on direction of momentum \rightarrow O(4) covariance is violated
- For each member a different Z-factor
- \bullet Conversion to covariant scheme \rightarrow common Z-factor for all members
- Here: average over all members

$$Z_q^{-1} Z \frac{1}{N} \sum_{j=1}^{N} \frac{1}{12} \operatorname{tr} \left(\Gamma_j(\rho) \, \Gamma_{j, \operatorname{Born}}(\rho)^{-1} \right) = 1$$

where *j* runs over all members of the multiplett \rightarrow common Z-factor

• □ > • □ > • □ > •

- If dimension of multiplet > 1 \rightarrow trace depends on direction of momentum \rightarrow O(4) covariance is violated
- For each member a different Z-factor
- \bullet Conversion to covariant scheme \rightarrow common Z-factor for all members
- Here: average over all members

$$Z_q^{-1} Z \frac{1}{N} \sum_{j=1}^{N} \frac{1}{12} \operatorname{tr} \left(\Gamma_j(\rho) \, \Gamma_{j, \operatorname{Born}}(\rho)^{-1} \right) = 1$$

where *j* runs over all members of the multiplett \rightarrow common Z-factor

< ロ > < 同 > < 三 > < 三

- If dimension of multiplet > 1 \rightarrow trace depends on direction of momentum \rightarrow O(4) covariance is violated
- For each member a different Z-factor
- Conversion to covariant scheme → common Z-factor for all members
- Here: average over all members

$$Z_q^{-1} Z \frac{1}{N} \sum_{j=1}^{N} \frac{1}{12} \operatorname{tr} \left(\Gamma_j(\rho) \, \Gamma_{j, \operatorname{Born}}(\rho)^{-1} \right) = 1$$

where *j* runs over all members of the multiplett \rightarrow common Z-factor

< ロ > < 同 > < 回 > < 回 >

- If dimension of multiplet > 1 \rightarrow trace depends on direction of momentum \rightarrow O(4) covariance is violated
- For each member a different Z-factor
- Conversion to covariant scheme → common Z-factor for all members
- Here: average over all members

$$Z_q^{-1} Z \frac{1}{N} \sum_{j}^{N} \frac{1}{12} \operatorname{tr} \left(\Gamma_j(\rho) \, \Gamma_{j, \operatorname{Born}}(\rho)^{-1} \right) = 1$$

where *j* runs over all members of the multiplett \rightarrow common Z-factor

Following settings are used for the discussed examples

- Clover improved Wilson fermions + plaquette gauge action
- Landau gauge
- $24^3 \times 48$ lattice, $\beta = 5.4$
- $\frac{r_0}{a} = 8.285, r_0 \Lambda_{\overline{\text{MS}}} = 0.73, r_0 = 0.5$
- $P = 0.562499 \rightarrow g^2 = 1.11111, g_B^2 = \frac{g^2}{P} = 1.97531$

Following settings are used for the discussed examples

- Clover improved Wilson fermions + plaquette gauge action
- Landau gauge
- $24^3 \times 48$ lattice, $\beta = 5.4$
- $\frac{r_0}{a} = 8.285, r_0 \Lambda_{\overline{\text{MS}}} = 0.73, r_0 = 0.5$
- $P = 0.562499 \rightarrow g^2 = 1.11111, g_B^2 = \frac{g^2}{P} = 1.97531$

Following settings are used for the discussed examples

- Clover improved Wilson fermions + plaquette gauge action
- Landau gauge
- $24^3 \times 48$ lattice, $\beta = 5.4$
- $\frac{r_0}{a} = 8.285, r_0 \Lambda_{\overline{\text{MS}}} = 0.73, r_0 = 0.5$
- $P = 0.562499 \rightarrow g^2 = 1.11111, g_B^2 = \frac{g^2}{P} = 1.97531$

(ロ) (同) (ヨ) (ヨ) 三日

Following settings are used for the discussed examples

- Clover improved Wilson fermions + plaquette gauge action
- Landau gauge
- $24^3 \times 48$ lattice, $\beta = 5.4$
- $\frac{r_0}{a} = 8.285, r_0 \Lambda_{\overline{\text{MS}}} = 0.73, r_0 = 0.5$
- $P = 0.562499 \rightarrow g^2 = 1.11111, g_B^2 = \frac{g^2}{P} = 1.97531$

(ロ) (同) (ヨ) (ヨ) 三日

Following settings are used for the discussed examples

- Clover improved Wilson fermions + plaquette gauge action
- Landau gauge
- $24^3 \times 48$ lattice, $\beta = 5.4$

•
$$\frac{r_0}{a} = 8.285, r_0 \Lambda_{\overline{\text{MS}}} = 0.73, r_0 = 0.5$$

• $P = 0.562499 \rightarrow g^2 = 1.11111, g_B^2 = \frac{g^2}{P} = 1.97531$

One-loop subtraction (all)

General one-loop expression for the Z-factor

$$Z(\mu, a)_{
m pert} = 1 + rac{g^2 \, C_F}{16 \, \pi^2} \, F(p, a) + O(g^4)$$

In "conventional" LPT we have $\tilde{F}(p, a) \simeq \gamma \ln(a^2 p^2) + \Delta$

Difference $D(p, a) = F(p, a) - \tilde{F}(p, a) \rightarrow$ lattice artefacts in one-loop LPT

Define the subtracted Z-factor in RI'-MOM scheme

$$Z(\mu, \boldsymbol{a})_{\text{bare}}^{\text{RI}'-\text{MOM}}(\boldsymbol{p}, \boldsymbol{a})_{\text{MC,sub}} = Z(\mu, \boldsymbol{a})_{\text{bare}}^{\text{RI}'-\text{MOM}}(\boldsymbol{p}, \boldsymbol{a})_{\text{MC}} - \frac{g_B^2 \, C_F}{16 \, \pi^2} \, D(\boldsymbol{p}, \boldsymbol{a})$$

One-loop subtraction (all)

General one-loop expression for the Z-factor

$$Z(\mu, a)_{\text{pert}} = 1 + rac{g^2 C_F}{16 \pi^2} F(p, a) + O(g^4)$$

In "conventional" LPT we have $\tilde{F}(p, a) \simeq \gamma \ln(a^2 p^2) + \Delta$

Difference $D(p, a) = F(p, a) - \tilde{F}(p, a) \rightarrow$ lattice artefacts in one-loop LPT

Define the subtracted Z-factor in RI'-MOM scheme

$$Z(\mu, \boldsymbol{a})_{\text{bare}}^{\text{RI}'-\text{MOM}}(\boldsymbol{p}, \boldsymbol{a})_{\text{MC,sub}} = Z(\mu, \boldsymbol{a})_{\text{bare}}^{\text{RI}'-\text{MOM}}(\boldsymbol{p}, \boldsymbol{a})_{\text{MC}} - \frac{g_B^2 \, C_F}{16 \, \pi^2} \, D(\boldsymbol{p}, \boldsymbol{a})$$

イロト イポト イラト イラト 一戸

General one-loop expression for the Z-factor

$$Z(\mu, a)_{\text{pert}} = 1 + rac{g^2 C_F}{16 \pi^2} F(p, a) + O(g^4)$$

In "conventional" LPT we have $\tilde{F}(p, a) \simeq \gamma \ln(a^2 p^2) + \Delta$

Difference $D(p, a) = F(p, a) - \tilde{F}(p, a) \rightarrow$ lattice artefacts in one-loop LPT

Define the subtracted Z-factor in RI'-MOM scheme

$$Z(\mu, a)_{\text{bare}}^{\text{RI}'-\text{MOM}}(\rho, a)_{\text{MC,sub}} = Z(\mu, a)_{\text{bare}}^{\text{RI}'-\text{MOM}}(\rho, a)_{\text{MC}} - \frac{g_B^2 C_F}{16 \pi^2} D(\rho, a)$$

- Procedure ensures complete $O(a^n)$ subtraction in one-loop
- D(p, a) is computed numerically → large computational effort, for operators with more than one covariant derivative impractical
- Use of boosted coupling g_B is justified a posteriori by the result

• Z-factor in RGI-scheme:

$$Z^{\text{RGI}} = \Delta Z^{\widetilde{MOMgg}} Z^{\widetilde{MOMgg}}_{\text{RI'}-\text{MOM}} Z^{\text{RI'}-\text{MOM}}_{\text{bare},\text{MC},\text{sub}}$$

- Ideally, Z^{RGI} does not depend on scale p, but we may have significant deviations due to
 - Remaining O(a) artefacts
 - Truncation of perturbation theory
- Remaining scale dependence is fitted constrained by lattice symmetry and perturbative "ingredients"

- Procedure ensures complete $O(a^n)$ subtraction in one-loop
- D(p, a) is computed numerically → large computational effort, for operators with more than one covariant derivative impractical
- Use of boosted coupling g_B is justified a posteriori by the result

• Z-factor in RGI-scheme:

$$Z^{\text{RGI}} = \Delta Z^{\widetilde{MOMgg}} Z^{\widetilde{MOMgg}}_{\text{RI'}-\text{MOM}} Z^{\text{RI'}-\text{MOM}}_{\text{bare},\text{MC},\text{sub}}$$

- Ideally, Z^{RGI} does not depend on scale p, but we may have significant deviations due to
 - Remaining O(a) artefacts
 - Truncation of perturbation theory
- Remaining scale dependence is fitted constrained by lattice symmetry and perturbative "ingredients"

・ロト ・同ト ・モト ・モト

- Procedure ensures complete $O(a^n)$ subtraction in one-loop
- D(p, a) is computed numerically → large computational effort, for operators with more than one covariant derivative impractical
- Use of boosted coupling g_B is justified a posteriori by the result

• Z-factor in RGI-scheme:

$$Z^{\text{RGI}} = \Delta Z^{\widetilde{MOMgg}} Z^{\widetilde{MOMgg}}_{\text{RI'}-\text{MOM}} Z^{\text{RI'}-\text{MOM}}_{\text{bare,MC,sub}}$$

- Ideally, *Z*^{RGI} does not depend on scale *p*, but we may have significant deviations due to
 - Remaining O(a) artefacts
 - Truncation of perturbation theory
- Remaining scale dependence is fitted constrained by lattice symmetry and perturbative "ingredients"

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

- Procedure ensures complete $O(a^n)$ subtraction in one-loop
- D(p, a) is computed numerically → large computational effort, for operators with more than one covariant derivative impractical
- Use of boosted coupling g_B is justified a posteriori by the result
- Z-factor in RGI-scheme:

$$Z^{\text{RGI}} = \Delta Z^{\widetilde{MOM}gg} Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}} Z^{\text{RI'}-\text{MOM}}_{\text{bare,MC,sub}}$$

- Ideally, Z^{RGI} does not depend on scale p, but we may have significant deviations due to
 - Remaining O(a) artefacts
 - Truncation of perturbation theory
- Remaining scale dependence is fitted constrained by lattice symmetry and perturbative "ingredients"

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

- Procedure ensures complete O(aⁿ) subtraction in one-loop
- D(p, a) is computed numerically → large computational effort, for operators with more than one covariant derivative impractical
- Use of boosted coupling g_B is justified a posteriori by the result
- Z-factor in RGI-scheme:

$$Z^{\text{RGI}} = \Delta Z^{\widetilde{MOM}gg} Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}} Z^{\text{RI'}-\text{MOM}}_{\text{bare,MC,sub}}$$

- Ideally, Z^{RGI} does not depend on scale p, but we may have significant deviations due to
 - Remaining O(a) artefacts
 - Truncation of perturbation theory
- Remaining scale dependence is fitted constrained by lattice symmetry and perturbative "ingredients"

- Procedure ensures complete O(aⁿ) subtraction in one-loop
- D(p, a) is computed numerically → large computational effort, for operators with more than one covariant derivative impractical
- Use of boosted coupling g_B is justified a posteriori by the result
- Z-factor in RGI-scheme:

$$Z^{\text{RGI}} = \Delta Z^{\widetilde{MOM}gg} Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}} Z^{\text{RI'}-\text{MOM}}_{\text{bare,MC,sub}}$$

- Ideally, Z^{RGI} does not depend on scale p, but we may have significant deviations due to
 - Remaining O(a) artefacts
 - Truncation of perturbation theory
- Remaining scale dependence is fitted constrained by lattice symmetry and perturbative "ingredients"

- Procedure ensures complete O(aⁿ) subtraction in one-loop
- D(p, a) is computed numerically → large computational effort, for operators with more than one covariant derivative impractical
- Use of boosted coupling g_B is justified a posteriori by the result
- Z-factor in RGI-scheme:

$$Z^{\text{RGI}} = \Delta Z^{\widetilde{MOM}gg} Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}} Z^{\text{RI'}-\text{MOM}}_{\text{bare,MC,sub}}$$

- Ideally, Z^{RGI} does not depend on scale p, but we may have significant deviations due to
 - Remaining O(a) artefacts
 - Truncation of perturbation theory
- Remaining scale dependence is fitted constrained by lattice symmetry and perturbative "ingredients"

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Procedure ensures complete O(aⁿ) subtraction in one-loop
- D(p, a) is computed numerically → large computational effort, for operators with more than one covariant derivative impractical
- Use of boosted coupling g_B is justified a posteriori by the result
- Z-factor in RGI-scheme:

$$Z^{\text{RGI}} = \Delta Z^{\widetilde{MOM}gg} Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}} Z^{\text{RI'}-\text{MOM}}_{\text{bare,MC,sub}}$$

- Ideally, Z^{RGI} does not depend on scale p, but we may have significant deviations due to
 - Remaining O(a) artefacts
 - Truncation of perturbation theory
- Remaining scale dependence is fitted constrained by lattice symmetry and perturbative "ingredients"

One-loop subtraction (all) - results

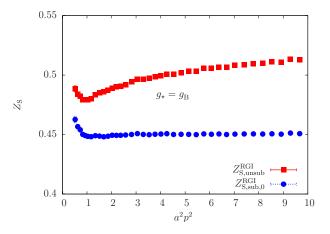


Figure: Unsubtracted and subtracted renormalization constants Z^{RGI} for the operator \mathcal{O}^{S} .

One-loop subtraction (all) - results

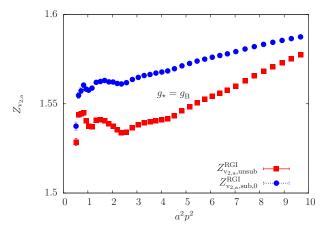


Figure: Unsubtracted and subtracted renormalization constants Z^{RGI} for the operator $\mathcal{O}_{v_{2,a}}$.

One-loop subtraction $O(a^2p^2)$

- Look for procedure which can be applied to more general cases eventually with "less" correction effect
- Cyprus group pioneered diagrammatic O(g²a²p²) approach (see e.g., M. Constantinou, V. Lubicz, H. Panagopoulos and F. Stylianou, JHEP 0910 (2009) 064)
- Results for local and one-link bilinears and different actions and general mass terms; higher derivative operators are possible (but also not very easy)

- ロ ト ・ 同 ト ・ ヨ ト ・ ヨ

One-loop subtraction $O(a^2p^2)$

- Look for procedure which can be applied to more general cases eventually with "less" correction effect
- Cyprus group pioneered diagrammatic O(g²a²p²) approach (see e.g., *M. Constantinou, V. Lubicz, H. Panagopoulos and F. Stylianou, JHEP* 0910 (2009) 064)
- Results for local and one-link bilinears and different actions and general mass terms; higher derivative operators are possible (but also not very easy)

ヘロッ ヘボッ ヘヨッ ヘヨ

One-loop subtraction $O(a^2p^2)$

- Look for procedure which can be applied to more general cases eventually with "less" correction effect
- Cyprus group pioneered diagrammatic O(g²a²p²) approach (see e.g., *M. Constantinou, V. Lubicz, H. Panagopoulos and F. Stylianou, JHEP* 0910 (2009) 064)
- Results for local and one-link bilinears and different actions and general mass terms; higher derivative operators are possible (but also not very easy)

・ 同 ト ・ ヨ ト ・ ヨ

Example: scalar operator \mathcal{O}^{S}

$$Z^{S}(a,p) = 1 + \frac{g^{2}C_{F}}{16\pi^{2}} \left(-23.3099453215 + 3\log(a^{2}p^{2}) + (a^{2}p^{2}) \left(1.6408851782248 - \frac{239}{240}\log(a^{2}p^{2}) + \frac{p4}{(p^{2})^{2}} \left(1.9510436778 - \frac{101}{120}\log(a^{2}p^{2}) \right) \right) \right)$$

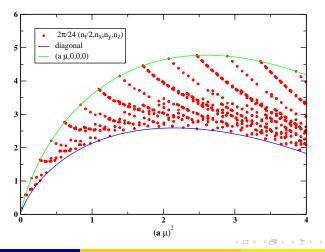
$$\equiv 1 + g^{2}Z_{1}^{S} + g^{2}a^{2}p^{2}\Delta Z_{2}^{S} \equiv 1 + \frac{g^{2}C_{F}}{16\pi^{2}}Z_{S}^{(1)} + \frac{g^{2}C_{F}}{16\pi^{2}}a^{2}Z_{S}^{(2)}$$

with $p4 = \sum_{\lambda=1}^{4} p_{\lambda}^{4}$

$O^{\rm S} - O(g^2 a^2 p^2)$ artefacts

 $O(g^2 a^2 p^2)$ lattice artefacts for a general momentum set (24³ × 48)

 $a^2 Z_s^{(2)}$ for various directions of μ



Talk H. Perlt (Leipzig)

Perturbative subtraction of lattice artefacts

Following procedures are possible

$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 1} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} - g_{\star}^2 \,\delta Z_{a^2}$$
$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 2} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} \times \left(1 - g_{\star}^2 \,\delta Z_{a^2}\right)$$
$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 3} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} / \left(1 + g_{\star}^2 \,\delta Z_{a^2}\right)$$

 g_* can be chosen to be either the bare lattice coupling g or the boosted coupling g_B .

Talk H. Perlt (Leipzig)

Following procedures are possible

•
$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 1} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} - g_{\star}^2 \,\delta Z_{a^2}$$

• $Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 2} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} \times \left(1 - g_{\star}^2 \,\delta Z_{a^2}\right)$
• $Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 2} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} \times \left(1 - g_{\star}^2 \,\delta Z_{a^2}\right)$

$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p,a)_{\text{MC,sub},3} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p,a)_{\text{MC}} / \left(1 + g_{\star}^2 \,\delta Z_{a^2}\right)$$

 g_{\star} can be chosen to be either the bare lattice coupling g or the boosted coupling $g_{\rm B}$.

Talk H. Perlt (Leipzig)

Following procedures are possible

•
$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 1} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} - g_{\star}^2 \, \delta Z_{a^2}$$

• $Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 2} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} \times \left(1 - g_{\star}^2 \, \delta Z_{a^2}\right)$
• $Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 3} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} / \left(1 + g_{\star}^2 \, \delta Z_{a^2}\right)$

 g_* can be chosen to be either the bare lattice coupling g or the boosted coupling g_B .

Talk H. Perlt (Leipzig)

< ロ > < 同 > < 回 > < 回 >

Following procedures are possible

•
$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 1} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} - g_{\star}^2 \, \delta Z_{a^2}$$

• $Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 2} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} \times \left(1 - g_{\star}^2 \, \delta Z_{a^2}\right)$
• $Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 3} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} / \left(1 + g_{\star}^2 \, \delta Z_{a^2}\right)$

 g_* can be chosen to be either the bare lattice coupling g or the boosted coupling g_B .

Talk H. Perlt (Leipzig)

< ロ > < 同 > < 回 > < 回 >

Following procedures are possible

$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 1} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} - g_{\star}^2 \,\delta Z_{a^2}$$

$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 2} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} \times \left(1 - g_{\star}^2 \,\delta Z_{a^2}\right)$$

$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}, \text{sub}, 3} = Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p, a)_{\text{MC}} / \left(1 + g_{\star}^2 \,\delta Z_{a^2}\right)$$

 g_{\star} can be chosen to be either the bare lattice coupling g or the boosted coupling $g_{\rm B}$.

Talk H. Perlt (Leipzig)

Effect of subtraction

For the scalar operator we get

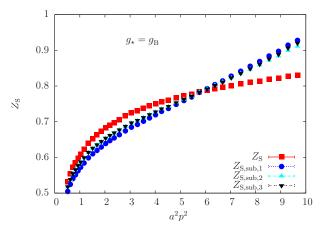


Figure: $Z_{\rm S}$ and $Z_{{\rm S},{\rm sub},{\rm i}}$ as function of a^2p^2 .

Talk H. Perlt (Leipzig)

Perturbative subtraction of lattice artefacts

Fit of lattice artefacts

Parametrizing the remaining lattice artefacts

$$\left(Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(p) Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}}(p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(p, a)_{\text{MC,sub}}\right)$$

$$Z_{\rm RI'-MOM}^{\widetilde{MOM}gg}(p) Z_{\rm bare}^{\rm RI'-MOM}(p, a)_{\rm MC, sub} = Z^{\rm RGI}(a) / \Delta Z^{\widetilde{MOM}gg}(p) + \beta a^2 p 2 + \gamma a^2 p 4/p 2 + \epsilon a^2 p 6/p 2^2 + \kappa a^4 p 2^2 + \lambda a^4 p 4 + \mu a^6 p 2^3 + \nu a^6 p 4 p 2 + \omega a^6 p 6$$

$$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega)$$
 fit the lattice artefacts $pn = \sum_{i} p_{i}^{n}$

- We chose of a set of momentum intervals $a^2 p_{i,min}^2 \le a^2 p^2 \le a^2 p_{i,max}^2$. In order to avoid the region of Landau poles we demand for all *i* the lower limit $(a^2 p_{i,min}^2) \ge 0.5$.
- 2 Among all fits we extract those with $\chi^2 \le \chi^2_{min}$. It turned out that $\chi^2_{min} = 2$ is a good choice.
- ⁽³⁾ We determine $Z^{RGI}(a)$ by investigation of the resulting histogram.
- The calculated parameters $(\beta, \gamma, \epsilon)$ are used to investigate the remaining $O(a^2p^2)$ dependence.

< ロ > < 同 > < 回 > < 回 > <

- We chose of a set of momentum intervals $a^2 p_{i,min}^2 \le a^2 p_{i,max}^2$. In order to avoid the region of Landau poles we demand for all *i* the lower limit $(a^2 p_{i,min}^2) \ge 0.5$.
- 2 Among all fits we extract those with $\chi^2 \le \chi^2_{min}$. It turned out that $\chi^2_{min} = 2$ is a good choice.
- 3 We determine $Z^{RGI}(a)$ by investigation of the resulting histogram.
- The calculated parameters $(\beta, \gamma, \epsilon)$ are used to investigate the remaining $O(a^2p^2)$ dependence.

(日)

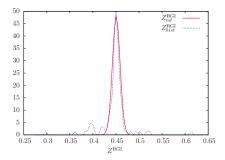
- We chose of a set of momentum intervals $a^2 p_{i,min}^2 \le a^2 p^2 \le a^2 p_{i,max}^2$. In order to avoid the region of Landau poles we demand for all *i* the lower limit $(a^2 p_{i,min}^2) \ge 0.5$.
- 2 Among all fits we extract those with $\chi^2 \le \chi^2_{min}$. It turned out that $\chi^2_{min} = 2$ is a good choice.
- Solution We determine $Z^{\text{RGI}}(a)$ by investigation of the resulting histogram.
- The calculated parameters (β, γ, ε) are used to investigate the remaining O(a²p²) dependence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We chose of a set of momentum intervals $a^2 p_{i,min}^2 \le a^2 p^2 \le a^2 p_{i,max}^2$. In order to avoid the region of Landau poles we demand for all *i* the lower limit $(a^2 p_{i,min}^2) \ge 0.5$.
- 2 Among all fits we extract those with $\chi^2 \le \chi^2_{min}$. It turned out that $\chi^2_{min} = 2$ is a good choice.
- **(3)** We determine $Z^{\text{RGI}}(a)$ by investigation of the resulting histogram.
- The calculated parameters $(\beta, \gamma, \epsilon)$ are used to investigate the remaining $O(a^2p^2)$ dependence.

Determination of Z^{RGI}

Smoothed histogram \to normal distribution $\to \langle Z_S^{RGI} \rangle$ for the choice $a^2 p_{max}^2 = 5.5$ and $\chi^2 \le 2$

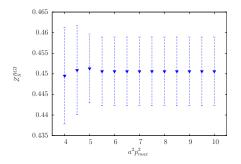


 $\longrightarrow \langle Z_{\rm S}^{\rm RGI} \rangle = 0.45062(834)$

-

Determination of Z^{RGI}

Repeat this procedure for various $a^2 p_{i,max}^2$ but keep the condition $\chi^2 \leq \mathbf{2}$



For $a^2 p_{max}^2 \ge 5.5$ no new data enter the fit with $\chi^2 \le 2 \rightarrow$ stable result

- 4 同 ト - 4 三 ト

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \leq 2$, $a^2 p_{max}^2 = 5.5$, $\{p\}_{all}$

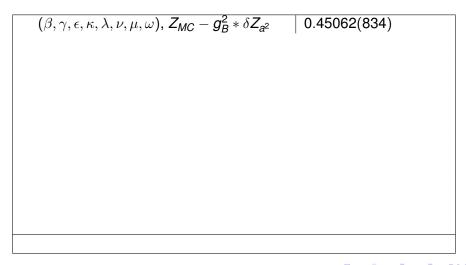
Talk H. Perlt (Leipzig)

Perturbative subtraction of lattice artefacts

< D > < P > < E >

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \le 2, \ a^2 p_{max}^2 = 5.5, \{p\}_{all}$



Talk H. Perlt (Leipzig)

Determination of Z^{RGI} - different variants

Common setting:
$$\chi^2 \leq 2$$
, $a^2 p_{max}^2 = 5.5$, $\{p\}_{all}$

 $(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$ $(0, 0, 0, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$ 0.45062(834)0.44746(93)

Talk H. Perlt (Leipzig)

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \leq 2$, $a^2 p_{max}^2 = 5.5$, $\{p\}_{all}$

$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$ $(0, 0, 0, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$	0.45062(834) 0.44746(93)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2})$	0.46117(818)

A (1) < (1) < (1) </p>

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \leq 2$, $a^2 p_{max}^2 = 5.5$, $\{p\}_{all}$

$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$	0.45062(834)
$(0,0,0,\kappa,\lambda, u,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$	0.44746(93)
$ (\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) $	0.46117(818)
$(0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}*(1-g_B^2*\delta Z_{a^2})$	0.45943(86)

Talk H. Perlt (Leipzig)

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \leq 2$, $a^2 p_{max}^2 = 5.5$, $\{p\}_{all}$

$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$	0.45062(834)
$(0,0,0,\kappa,\lambda, u,\mu,\omega), Z_{MC}-g_B^2*\delta Z_{a^2}$	0.44746(93)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2})$	0.46117(818)
$(0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}*(1-g_B^2*\delta Z_{a^2})$	0.45943(86)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2})$	0.46066(813)

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \leq 2$, $a^2 p_{max}^2 = 5.5$, $\{p\}_{all}$

$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$	0.45062(834)
$(0,0,0,\kappa,\lambda, u,\mu,\omega), Z_{MC}-g_B^2*\delta Z_{a^2}$	0.44746(93)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2})$	0.46117(818)
$(0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}*(1-g_B^2*\delta Z_{a^2})$	0.45943(86)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2})$	0.46066(813)
$(0,0,0,\kappa,\lambda, u,\mu,\omega), Z_{MC}/(1+g_B^2*\delta Z_{a^2})$	0.46000(92)

Determination of Z^{RGI} - different variants

$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$	0.45062(834)
$(0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$	0.44746(93)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} * (1 - g_B^2 * \delta Z_{aa})$	2) 0.46117(818)
$(0, 0, 0, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a})$	2) 0.45943(86)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2})$) 0.46066(813)
$(0, 0, 0, \kappa, \lambda, \nu, \mu, \omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2})$	
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} - g^2 * \delta Z_{a^2}$	0.45670(862)

Determination of Z^{RGI} - different variants

$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2}$	0.45062(834)
$(0,0,0,\kappa,\lambda, u,\mu,\omega), Z_{MC}-g_B^2*\delta Z_{a^2}$	0.44746(93)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2})$	0.46117(818)
$(0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}*(1-g_B^2*\delta Z_{a^2})$	0.45943(86)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2})$	0.46066(813)
$(0, 0, 0, \kappa, \lambda, \nu, \mu, \omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2})$	0.46000(92)
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega), Z_{MC} - g^2 * \delta Z_{a^2}$	0.45670(862)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$, $Z_{MC}-g^2*\delta Z_{a^2}$	0.44745(95)

Determination of Z^{RGI} - different variants

$$\begin{array}{ll} (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2} & 0.45062(834) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2} & 0.44746(93) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) & 0.46117(818) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) & 0.45943(86) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2}) & 0.46066(813) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2}) & 0.46000(92) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g^2 * \delta Z_{a^2} & 0.45670(862) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g^2 * \delta Z_{a^2} & 0.44745(95) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g^2 * \delta Z_{a^2}) & 0.46252(857) \end{array}$$

Determination of Z^{RGI} - different variants

$$\begin{array}{ll} (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2} & 0.45062(834) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2} & 0.44746(93) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) & 0.46117(818) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) & 0.45943(86) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2}) & 0.46066(813) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2}) & 0.46000(92) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g^2 * \delta Z_{a^2} & 0.45670(862) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g^2 * \delta Z_{a^2} & 0.44745(95) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g^2 * \delta Z_{a^2}) & 0.46603(37) \\ \end{array}$$

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \leq 2, \ a^2 p_{max}^2 = 5.5, \{p\}_{all}$

$$\begin{array}{ll} (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2} & 0.45062(834) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2} & 0.44746(93) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) & 0.46117(818) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) & 0.45943(86) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2}) & 0.46066(813) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2}) & 0.46000(92) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g^2 * \delta Z_{a^2} & 0.45670(862) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g^2 * \delta Z_{a^2} & 0.44745(95) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g^2 * \delta Z_{a^2}) & 0.4603(37) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g^2 * \delta Z_{a^2}) & 0.46235(855) \\ \end{array}$$

Talk H. Perlt (Leipzig)

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \leq 2, \ a^2 p_{max}^2 = 5.5, \{p\}_{all}$

$$\begin{array}{ll} (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2} & 0.45062(834) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g_B^2 * \delta Z_{a^2} & 0.44746(93) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) & 0.46117(818) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g_B^2 * \delta Z_{a^2}) & 0.45943(86) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2}) & 0.46066(813) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g_B^2 * \delta Z_{a^2}) & 0.46000(92) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g^2 * \delta Z_{a^2} & 0.45670(862) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} - g^2 * \delta Z_{a^2}) & 0.46252(857) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC} * (1 - g^2 * \delta Z_{a^2}) & 0.46603(37) \\ (\beta,\gamma,\epsilon,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g^2 * \delta Z_{a^2}) & 0.46235(855) \\ (0,0,0,\kappa,\lambda,\nu,\mu,\omega), Z_{MC}/(1 + g^2 * \delta Z_{a^2}) & 0.46620(32) \\ \end{array}$$

Talk H. Perlt (Leipzig)

Determination of Z^{RGI} - different variants

Common setting: $\chi^2 \leq 2, \ a^2 p_{max}^2 = 5.5, \{p\}_{all}$

$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega)$, $Z_{MC}-g_B^2*\delta Z_{a^2}$	0.45062(834)
$(0,0,0,\kappa,\lambda, u,\mu,\omega), Z_{MC}-g_B^2*\delta Z_{a^2}$	0.44746(93)
$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega), Z_{MC}*(1-g_B^2*\delta Z_{a^2})$	0.46117(818)
$(0,0,0,\kappa,\lambda, u,\mu,\omega),$ $Z_{MC}*(1-g_B^{\overline{2}}*\delta Z_{a^2})$	0.45943(86)
$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega)$, $Z_{MC}/(1+g_B^2*\delta Z_{a^2})$	0.46066(813)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$, $Z_{MC}/(1+g_B^{2}*\delta Z_{\mathbf{a}^2})$	0.46000(92)
$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega),$ $Z_{MC}-g^{2}*\delta Z_{a^{2}}$	0.45670(862)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$, $Z_{MC}-g^2*\delta Z_{a^2}$	0.44745(95)
$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega),$ $Z_{MC}*(1-g^2*\delta Z_{a^2})$	0.46252(857)
$(0,0,0,\kappa,\lambda, u,\mu,\omega),$ $Z_{MC}*(1-g^{2}*\delta Z_{a^{2}})$	0.46603(37)
$(eta,\gamma,\epsilon,\kappa,\lambda, u,\mu,\omega)$, $Z_{MC}/(1+g^2*\delta Z_{a^2})$	0.46235(855)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$, $Z_{MC}/(1+g^2*\delta Z_{a^2})$	0.46620(32)
subtract-all (Göckeler et al.)	0.45155(80)(568)(15)

Talk H. Perlt (Leipzig)

Determination of Z^{RGI} - different variants

- Current data set contains momenta near the diagonal → procedure should be tested for more non-diagonal momenta
- Selection of more non-diagonal momenta out of the current data no significant change (number of data points decreases, however)
- Using the "all-artefact-subtraction"-method as reference scheme \rightarrow the choice of $g_{\star} = g_B$ and subtraction type $Z_{MC} g_B^2 \delta Z_{a^2}$ seems to be preferable

< 🗇 > < 🖻 > < 🖻

Determination of Z^{RGI} - different variants

- Current data set contains momenta near the diagonal → procedure should be tested for more non-diagonal momenta
- Selection of more non-diagonal momenta out of the current data no significant change (number of data points decreases, however)
- Using the "all-artefact-subtraction"-method as reference scheme \rightarrow the choice of $g_{\star} = g_B$ and subtraction type $Z_{MC} g_B^2 \delta Z_{a^2}$ seems to be preferable

・ 同 ト ・ ヨ ト ・ ヨ ト

Determination of Z^{RGI} - different variants

- Current data set contains momenta near the diagonal → procedure should be tested for more non-diagonal momenta
- Selection of more non-diagonal momenta out of the current data no significant change (number of data points decreases, however)
- Using the "all-artefact-subtraction"-method as reference scheme \rightarrow the choice of $g_{\star} = g_B$ and subtraction type $Z_{MC} g_B^2 \delta Z_{a^2}$ seems to be preferable

Remaining $O(a^2p^2)$ dependence

After subtraction of $O(g^2 a^2 p^2)$ terms remain

- $O(g^2(a^2p^2)^n), n > 1$ contributions
- 2 $O(g^{2n}a^2p^2), n > 1$ contributions
- 3 $O(g^{2n}(a^2p^2)^m), n, m > 1$ contributions

▲ 同 ▶ ▲ 国 ▶

Remaining $O(a^2p^2)$ dependence

After subtraction of $O(g^2 a^2 p^2)$ terms remain

- $O(g^2(a^2p^2)^n), n > 1$ contributions
- 2 $O(g^{2n}a^2p^2), n > 1$ contributions
- 3 $O(g^{2n}(a^2p^2)^m), n, m > 1$ contributions

▲ 同 ▶ ▲ 国 ▶

Remaining $O(a^2p^2)$ dependence

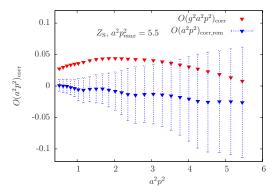
After subtraction of $O(g^2 a^2 p^2)$ terms remain

- $O(g^2(a^2p^2)^n), n > 1$ contributions
- 2 $O(g^{2n}a^2p^2), n > 1$ contributions
- $O(g^{2n}(a^2p^2)^m), n, m > 1$ contributions

< 同 > < ∃ >

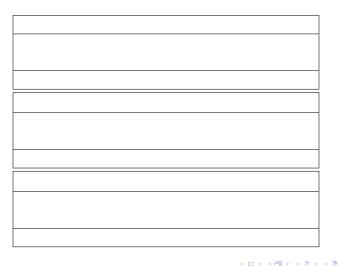
Remaining $O(a^2p^2)$ dependence

Compare $O(g^2 a^2 p^2)_{corr}$ and the remaining $O(a^2 p^2)_{corr,rem}$ after subtraction (described by the parameters $(\beta, \gamma, \epsilon)$)

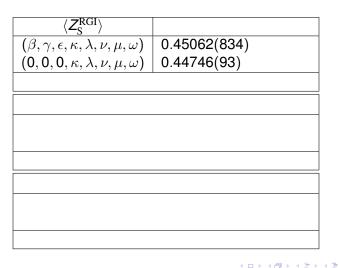


 \rightarrow for scalar operator the $O(g^2 a^2 p^2)_{corr}$ does a good job already Fit with $\beta = \gamma = \epsilon = 0 \rightarrow \langle Z_{\rm S}^{\rm RGI} \rangle = 0.44746(93)$

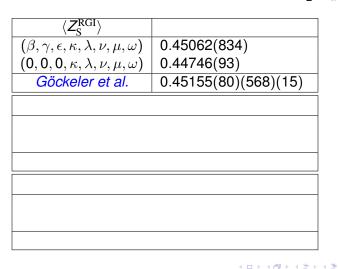
Same procedure for one-link operators ($g_{\star} = g_B, Z_{MC} - g_B^2 \delta Z_{a^2}$)



Same procedure for one-link operators ($g_{\star} = g_B, Z_{MC} - g_B^2 \delta Z_{a^2}$)



Same procedure for one-link operators ($g_{\star} = g_B, Z_{MC} - g_B^2 \delta Z_{a^2}$)



Same procedure for one-link operators ($g_{\star} = g_B, Z_{MC} - g_B^2 \delta Z_{a^2}$)

(15)

Talk H. Perlt (Leipzig)

<ロ> <同> <同> <同> < 同> < 同>

Same procedure for one-link operators ($g_{\star} = g_B, Z_{MC} - g_B^2 \delta Z_{a^2}$)

0.45062(834)
0.44746(93)
0.45155(80)(568)(15)
1.5572(65)
1.5590(16)
1.5526(54)(-159)(6)

Talk H. Perlt (Leipzig)

・ロ・・ 同・ ・ ヨ・ ・ ヨ

Same procedure for one-link operators ($g_{\star} = g_B, Z_{MC} - g_B^2 \delta Z_{a^2}$)

$\langle Z_{\rm S}^{\rm RGI} \rangle$	
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega)$	0.45062(834)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$	0.44746(93)
Göckeler et al.	0.45155(80)(568)(15)
$\langle Z_{v_{2,a}}^{ m RGI} angle$	
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega)$	1.5572(65)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$	1.5590(16)
Göckeler et al.	1.5526(54)(-159)(6)
$\langle Z_{\nu_{2,b}}^{ m RGI} angle$	
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega)$	1.5537(99)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$	1.5625(12)
	·

Talk H. Perlt (Leipzig)

・ロ・・ 同・ ・ ヨ・ ・ ヨ

Same procedure for one-link operators ($g_{\star} = g_B, Z_{MC} - g_B^2 \delta Z_{a^2}$)

$\langle Z_{\rm S}^{\rm RGI} \rangle$	
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega)$	0.45062(834)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$	0.44746(93)
Göckeler et al.	0.45155(80)(568)(15)
$\langle Z_{\nu_{2,a}}^{ m RGI} angle$	
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega)$	1.5572(65)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$	1.5590(16)
Göckeler et al.	1.5526(54)(-159)(6)
$\langle Z_{\nu_{2,b}}^{ m RGI} \rangle$	
$(\beta, \gamma, \epsilon, \kappa, \lambda, \nu, \mu, \omega)$	1.5537(99)
$(0,0,0,\kappa,\lambda, u,\mu,\omega)$	1.5625(12)
Göckeler et al.	1.5555(28)(-155)(-6)

Talk H. Perlt (Leipzig)

・ロ・・ 同・ ・ ヨ・ ・ ヨ

Described subtraction procedures for getting rid of lattice artefacts

- Numerical procedure for subtraction of all lattice artefacts in one-loop very efficient
- Not suited for more complicated operators
- Subtraction of one-loop $O(a^2p^2)$ terms can be done for a more general class of operators
- Fit procedure must be performed and adjusted for each operator individually
- Using the "all lattice artefacts subtraction" procedure as reference algorithm the simple $O(a^2p^2)$ subtraction with boosted coupling g_B should be preferred.

- Described subtraction procedures for getting rid of lattice artefacts
- Numerical procedure for subtraction of all lattice artefacts in one-loop very efficient
- Not suited for more complicated operators
- Subtraction of one-loop O(a²p²) terms can be done for a more general class of operators
- Fit procedure must be performed and adjusted for each operator individually
- Using the "all lattice artefacts subtraction" procedure as reference algorithm the simple $O(a^2p^2)$ subtraction with boosted coupling g_B should be preferred.

- Described subtraction procedures for getting rid of lattice artefacts
- Numerical procedure for subtraction of all lattice artefacts in one-loop very efficient
- Not suited for more complicated operators
- Subtraction of one-loop O(a²p²) terms can be done for a more general class of operators
- Fit procedure must be performed and adjusted for each operator individually
- Using the "all lattice artefacts subtraction" procedure as reference algorithm the simple $O(a^2p^2)$ subtraction with boosted coupling g_B should be preferred.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

- Described subtraction procedures for getting rid of lattice artefacts
- Numerical procedure for subtraction of all lattice artefacts in one-loop very efficient
- Not suited for more complicated operators
- Subtraction of one-loop O(a²p²) terms can be done for a more general class of operators
- Fit procedure must be performed and adjusted for each operator individually
- Using the "all lattice artefacts subtraction" procedure as reference algorithm the simple $O(a^2p^2)$ subtraction with boosted coupling g_B should be preferred.

(日)

- Described subtraction procedures for getting rid of lattice artefacts
- Numerical procedure for subtraction of all lattice artefacts in one-loop very efficient
- Not suited for more complicated operators
- Subtraction of one-loop O(a²p²) terms can be done for a more general class of operators
- Fit procedure must be performed and adjusted for each operator individually
- Using the "all lattice artefacts subtraction" procedure as reference algorithm the simple $O(a^2p^2)$ subtraction with boosted coupling g_B should be preferred.

(日)

- Described subtraction procedures for getting rid of lattice artefacts
- Numerical procedure for subtraction of all lattice artefacts in one-loop very efficient
- Not suited for more complicated operators
- Subtraction of one-loop O(a²p²) terms can be done for a more general class of operators
- Fit procedure must be performed and adjusted for each operator individually
- Using the "all lattice artefacts subtraction" procedure as reference algorithm the simple $O(a^2p^2)$ subtraction with boosted coupling g_B should be preferred.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Acknowledgements

Partly supported by DFG

Talk H. Perlt (Leipzig)

Perturbative subtraction of lattice artefacts

Lattice 2012 29 / 29

(a)