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The MM coupling

Minimal MOM coupling

● aka ghost-gluon coupling, because it is 
based on ghost-ghost-gluon vertex

● defined in a particular MOM scheme in 
general covariant gauges

● defined beyond lattice QCD

Propagators  (Landau gauge)

● Ghost propagator function:

● Gluon propagator function:

[L. von Smekal et al (1995)]



The MM coupling

Minimal MOM coupling

● aka ghost-gluon coupling, because it is 
based on ghost-ghost-gluon vertex

● defined in a particular MOM scheme in 
general covariant gauges

● defined beyond lattice QCD

Propagators

● renormalised as in MOM scheme

Vertex

Minimal MOM subtraction scheme =
                  modified Minimal subtraction scheme + MOM subtraction scheme

Landau gauge

[L. von Smekal et al (1995)]



Relating a coupling to the MS scheme

At large enough scales
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The MM coupling

Relation to MS
[L. von Smekal, K. Maltman, A.S., PLB681, 336 (2009)]

up to 4-loop order

MM function

[for =0 (i.e., Landau gauge)   MM scheme = Taylor scheme of Boucaud et al. (2009­12)]

refer to [PLB681:336 (2009)]



Minimal MOM coupling on the lattice

Recipe

1) generate / download gauge 
configurations (any flavor)

2) gauge-fix these to Landau gauge

3) calculate gluon and ghost 
propagator in momentum space 
(diagonal momenta only)

4) extract dressing functions using
the correct lattice tree-level form

➔ for plain Wilson action:

Advantages

● no vertex, only 2-pt function
(much less noise)

● -function (and relation to MS)  
known to 4-loop

● good understanding of lattice 
spacing effects → better use of 
data at

● could be used to determine

[PLB681, 336 (2009)]



Minimal MOM coupling on the lattice

Momentum / Scale

● Express all lattice momenta in units of r0 :

● Use as input r0/a() values from

– N f  =0:       Necco-Sommer interpolation formula                            [Necco&Sommer (2002)]

– N f  =2:       new QCDSF values for chirally extrapolated r0/a()     [Bali&Najjar (2012)]

– N f  =2+1:  (currently) QCDSF values for r0/a()                             [Bali&Najjar (2012)]

● Seems ok:    no deviation seen in the data for different 

● Why QCDSF values?

– we use their N f  =2,2+1 configurations available via ILDG 



Minimal MOM coupling on the lattice

● data for different  overlaps almost completely, as it should

● understanding the small deviations is the subject of the talk

● also, no visible quark mass dependence

a=0.093...0.026fm

a=0.08...0.06fm



Minimal MOM coupling on the lattice

● data for different  overlaps almost completely, as it should

● understanding the small deviations is the subject of the talk

● also, no visible quark mass dependence

Why should I care about 
these deviations?

a=0.093...0.026fm

a=0.08...0.06fm



Minimal MOM coupling on the lattice

● for unquenched configurations: access to large momenta 
is restricted

● nonperturbative and other effects sneak in 

Why should I care about 
these deviations?



Effects

At smaller scales

● higher-loop contributions

● condensates

– dim=4 gluon condensate

– dim=2 condensate (maybe) 

● non-perturbative corrections 

At larger lattice momenta

● hyper-cubic artifacts due to finite a

Effective description of data

● Correlation of different fit parameters: have to carefully entangle this

Boucaud et al., see Petrov's talk



Let's play safe:  4-loop regime

4-loop relation:   MM ↔ MS

“Back-and-forth” ratio

Fits to pure 4-loop running

● stay above ~100GeV2,  if possible

(introduced above)



Data at sufficiently large momentum

Fits to 4-loop running

● have to stay in perturbative regime

N f=0 calculation

● access to large momenta easier 
(reasonable large volumes)

● 6.5 – 7.20 on 484, 644  feasible



Data at sufficiently large momentum

Fits to 4-loop running

● have to stay in perturbative regime

Nf=0 calculation

● access to large momenta easier 
(reasonable large volumes)

● 6.5 – 7.20 on 484, 644  feasible

Nf  =2  and Nf=2+1

● access to large momenta limited

● e.g., QCDSF 

– Nf=2:     483x64

– Nf=2+1: 3x64

Have to get most out of the data 
at larger lattice momentum

 → need to understand lattice
     discretization effects 



Ghost dressing function

At 1-loop order LPT

Ghost self-energy at 1-loop LPT [Kawai et al. (1981)]



Ghost dressing function

At 1-loop order LPT

Ghost self-energy at 1-loop LPT [Kawai et al. (1981)]

Hypercubic corrections



Ghost dressing function – hypercubic corr.

At 1-loop order LPT

Lessons

● diagonal momenta come with 
smallest deviations (not zero!) 

● use always correct lattice
tree-level structure

● Remember: ghost propagator at 
lattice tree-level

numerical integration

(exact)



Gluon self-energy

At 1-loop order LPT

Thanks to H.Perlt for the 3gl and 4gl-vertex functions



Gluon dressing function – hypercubic corr.

At 1-loop order LPT

Lessons

● Same as for ghost

● Remember: gluon propagator at 
lattice tree-level

(exact)



Gluon dressing function – hypercubic corr.

At 1-loop order LPT

Lessons

● Same as for ghost

● Remember: gluon propagator at 
lattice tree-level

(exact)



Subtracting corrections 

In perturbative regime

Subtracting exact 1-loop corrections

Hyper-cubic Taylor expansion of higher order corrections

 (for diagonal momenta)



Subtracting corrections – 1-loop is not enough

It turns out 

1-loop corrections remove only a 
minor part of the effects

Most of the effect can be described 
by a global fit to the data 
(simultaneously for different )

3 Parameters (in total)

Global fit function 

Fits, make sure that

1) stay in perturbative regime

2) avoid too large lattice momenta, but 
still sufficient enough



One global fit

+

Parameters:



One global fit

+



Global fits

Varying the fit window

● Lower cutoff

● Upper cutoff

Parameters:



Unquenched data after (fitted) subtraction



First three-flavour results

Currently

● Only data sets for one  = 5.50, more to come

● Encouraging: Data is in the right ball park 



Conclusions

Minimal MOM coupling

● data at sufficiently large scales allows for high-precision determination of MS

● if scales to small, nonperturbative / condensate / perturbative effects mix up

– Effectively 1/p2 corrections to 4-loop running at lower scales

→ fix MS first at large scales, then check behavior at lower scales

Problem and solution

● access to higher scales restricted                         (in particular for Nf=2,2+1)

● Understanding of lattice artefacts important         (mainly hypercubic corrections)

● Have calculated exact 1-loop corrections             (unfortunately only minor fraction)

● Remaining hypercubic corrections are fitted         (global 3-parameter fit)



Conclusions

Values for MS

● Still investigating systematic error   (3 fit parameters are anti-correlated)

● Preliminary values are in agreement with other studies (please do not copy yet)

Aim of talk was to show

● method is reliable

● precision is a matter of understanding finite lattice spacing corrections



– Advertisement –

New analysis of nucleon mass data (QCDSF)

● for Nf   = 2 we find

● more details will
appear on the arXiv
the next days

● or visit LHP IV

(more points than shown entered the fit)



Thank you for your attention!
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