Two-Photon Decay of Neutral Pion in Lattice QCD

[arXiv:1206.1375]

・ロト ・回ト ・ヨト ・ヨト

Xu Feng (KEK)

work with S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko, J. Noaki and E. Shintani on behalf of JLQCD collaboration

Lattice 2012, Cairns, Australia

Xu Feng (KEK)

Two-Photon Decay of Neutral Pion in Lattice Lattice 2012, Cairns, Australia 1 / 18

Motivation

- PrimEx@JLab: $\Gamma_{\pi^0\gamma\gamma} = 7.82(22)$ eV [PrimEx, PRL106, 2011]
- Precision: $2.8\% \rightarrow 1.4\%$ (projected goal)
- Benchmark test of axial U(1) anomaly in QCD

•
$$\Gamma_{\pi^0\gamma\gamma} = (\pi/4) \alpha_e^2 m_\pi^3 \mathcal{F}_{\pi^0\gamma\gamma}^2(m_\pi^2, 0, 0)$$

• $\mathcal{F}_{\pi^0\gamma\gamma}(m_\pi^2, p_1^2, p_2^2)$: $\pi^0 \to \gamma^* \gamma^*$ transition form factor

• $m_{\pi}^2 = p_{1,2}^2 = 0$, ABJ annoaly valid to all orders [Adler, Bardeen, 1969] $\mathcal{F}_{\pi^0\gamma\gamma}(0,0,0) = \mathcal{F}_{\pi^0\gamma\gamma}^{ABJ} = \frac{1}{4\pi^2 F_{\pi}}$

• $m_\pi^2
eq 0$, $p_{1,2}^2
eq 0$, corrections need to be calculated nonperturbatively

 overlap fermion: exact chiral symmetry ⇒ clean test of chiral anomaly Xu Feng (KEK)
 Two-Photon Decay of Neutral Pion in Lattice Lattice 2012, Cairns, Australia
 2 / 18

Lattice setup

- $\pi^0 \to \gamma \gamma$ is nontrivial
 - γ is not an asympototic state of QCD
 - conventional method to extract the eigenstate fails
 - 1^{--} interpolating operator yields vector meson rather than γ
- new method is needed
- all-to-all propagators is useful $\Rightarrow \langle J_{\mu}(t_1) J_{\nu}(t_2) \pi^0(t_{\pi}) \rangle$
 - calculate correlator at any time slice of t_1 , t_2 , t_π
 - disconnected diagram

Xu Feng (KEK)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Ensemble information

- four $m_{u,d}$: $m_{\pi} = 540 \rightarrow 290 \text{ MeV} \Rightarrow$ chiral extrapolation
- m_s fixed to be close to its physical value \Rightarrow dynamical *s*-quark effects
- L/a = 16 and $24 \Rightarrow$ finite-size effects
- Q = 0 and $1 \Rightarrow$ fixing-topology effects
- $a = 0.11 \text{ fm} \Rightarrow$ study possible lattice artifacts

Theoretical setup

• starting point: S-matrix

J

$\langle \gamma(\mathbf{p}_1, \lambda_1) \gamma(\mathbf{p}_2, \lambda_2) | \pi^0(\mathbf{q}) \rangle$

• transition form factor is defined by matrix element

 $\int d^4x e^{ip_1x} \langle \Omega | T\{J_{\mu}(x)J_{\nu}(0)\} | \pi^0(q) \rangle = \epsilon_{\mu\nu\alpha\beta} p_1^{\alpha} p_2^{\beta} F_{\pi^0\gamma\gamma}(m_{\pi}^2, p_1^2, p_2^2)$

 ϵ_{μναβ} p₁^α p₂^β: induced by the negative parity of the π⁰

 analytical continuation from Minkowski to Euclidean space-time
 [Ji, Jung, 2001; Dudek, Edwards, 2006]

$$\int dt e^{\omega t} \int d^3ec x e^{-iec p_1\cdotec x} \langle \Omega | \, \mathcal{T}\{J_\mu(x)J_
u(0)\} | \pi^0(q)
angle$$

• Euclidean space-time, 3-point correlation function

 $\langle \Omega | J_\mu(ec{p}_1,t_1) J_
u(ec{p}_2,t_2) \pi^0(-ec{q},t_\pi) | \Omega
angle$

Amplitude $A_{\pi}(\tau)$

• extract $|\pi^0(q)\rangle$: set $\tau = t_1 - t_2$ and $t = \min\{t_1, t_2\}$

Time dependence of $A_{\pi}(\tau)$

• VMD model: $\mathcal{F}_{\pi^0\gamma\gamma}^{\text{VMD}}(m_{\pi}^2, p_1^2, p_2^2) = c_V G_V(p_1^2) G_V(p_2^2)$ • $G_V(p^2) = M_V^2/(M_V^2 - p^2)$ is the (lightest) vector meson propagator

Fit ansatz

- lowest vector meson effects should be accounted for first
- corrected by including excited-state effects
- includes contributions from excited states as a polynomial of $p_{1,2}^2$

$$\begin{aligned} \mathcal{F}_{\pi^{0}\gamma\gamma}(m_{\pi}^{2},p_{1}^{2},p_{2}^{2}) &= c_{V}G_{V}(p_{1}^{2})G_{V}(p_{2}^{2}) \\ &+ \sum_{m}c_{m}\left((p_{2}^{2})^{m}G_{V}(p_{1}^{2}) + (p_{1}^{2})^{m}G_{V}(p_{2}^{2})\right) \\ &+ \sum_{m,n}c_{m,n}(p_{1}^{2})^{m}(p_{2}^{2})^{n} \end{aligned}$$

Xu Feng (KEK)

・ロン ・四 ・ ・ ヨン ・ ヨン

- 3

Momentum domain

- $A_{\pi}(\tau) \Rightarrow \langle \Omega | T\{J_{\mu}(\vec{p}_1,t)J_{\nu}(\vec{p}_2,0)\} | \pi^0(q) \rangle$
- perform integration: $\int dt \ e^{\omega t} \langle \Omega | T\{J_{\mu}(t)J_{\nu}(0)\} | \pi^{0} \rangle$ $\Rightarrow \mathcal{F}_{\pi^{0}\gamma\gamma}(m_{\pi}^{2}, p_{1}^{2}, p_{2}^{2})$
 - $\blacktriangleright \ \omega$ is input by hand
 - form factor relies on $p_1^2 \& p_2^2$

• tunning
$$\omega$$
, fixing $\vec{p}_{1,2}$:
 $p_1^2 = \omega^2 - \vec{p}_1^2$
 $p_2^2 = (E_{\pi} - \omega)^2 - \vec{p}_2^2$

 diff. spatial momentum setup, diff. contour of (p₁², p₂²)

Form factor

• along the contour of (p_1^2, p_2^2) (left), $\mathcal{F}_{\pi^0\gamma\gamma}(m_{\pi}^2, p_1^2, p_2^2)$ (right) is determined

Combined fit

Xu Feng (KEK)

Two-Photon Decay of Neutral Pion in LatticeLattice 2012, Cairns, Australia 11 / 18

On-shell photon limit

• $F(m_{\pi}^2,0,0)\equiv \mathcal{F}_{\pi^0\gamma\gamma}(m_{\pi}^2,0,0)/\mathcal{F}_{\pi^0\gamma\gamma}^{\mathrm{ABJ}}$

- data with $m_{\pi}L \ge 4$: consistent with ABJ and PrimEx
- L = 16: smallest two quark mass, $m_{\pi}L < 4$, big FS effects
- FS effects checked at topological sector Q = 0 and 1

Finite-size effects

• expand the correlator into three hadronic matrix elements:

 $\langle J_{\mu}J_{\nu}\pi^{0}
angle
ightarrow \langle \Omega|J_{\mu}|V
angle\langle V|J_{
u}|\pi^{0}
angle\langle \pi^{0}|\pi^{0}|\Omega
angle$

• FS effects in g_{ν} , $g_{V\pi\gamma}$, F_{π} accumulate and add up to a large effect

Finite-size corrections

• FS corrections $R_{\mathcal{O}} \equiv \mathcal{O}(\infty)/\mathcal{O}(L)$, assume $R_{F(m_{\pi}^2,0,0)} = R_{g_{\rho}}R_{g_{\rho\pi\gamma}}R_{F_{\pi}}$

Disconnected-diagram effects

- all-to-all propagator: control error of disc. contribution
- although not significant, conn+disc systematically shift down
- precision level (3% for form factor): disc. diagram should be included

Lattice artifacts

discrete data v.s. continuum case?

 \bullet disc. effects in VMD model: less than 5 \times 10 $^{-4},$ neglegiable

Numerical results

• after examining possible systematic effects

$$egin{array}{rll} F(0,0,0)&=&1.009(22)(29)\ F(m_{\pi,\mathrm{phy}}^2,0,0)&=&1.005(20)(30)\ \Gamma_{\pi^0\gamma\gamma}&=&7.83(31)(49)~\mathrm{eV} \end{array}$$

• ABJ anomaly and PrimEx measurement

$$egin{array}{rcl} F(0,0,0)&=&1\ F(m_{\pi,\mathrm{phy}}^2,0,0)&=&1.004(14)\ \Gamma_{\pi^0\gamma\gamma}&=&7.82(22)~\mathrm{eV} \end{array}$$

Xu Feng (KEK)

3

Conclusions

- $\pi^0 \to \gamma \gamma$ calculation is done successfully
 - by analytic continuation
 - using all-to-all propagators
- ABJ anomaly confirmed in the chiral limit
 - with the overlap fermion, it is satisfied at finite lattice spacing
- correction to ABJ can also be calculated precisely
- remaining major effect would be isospin breaking
- open a possibility to calculate amplitudes with no QCD asymptotic state
 - $\blacktriangleright \pi^+ \to I^+ \nu_I \gamma$
 - ▶ g 2, light-by-light

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Motivated by muon $g_{\mu} - 2$

- Exp. determination of g_{μ} 2 to 0.54 ppm [E821@BNL, PRD73, 2006]
- S.M. prediction of g_{μ} 2 to 0.51 ppm [Jegerlehner, EPJC71, 2011]
- Discrepancy: $3.3\sigma \Rightarrow$ New Physics ??
- HLbL is predicted to be dominant error in the next round

- Difficult: HLbL involves $\langle J_{\mu}J_{\nu}J_{\rho}J_{\sigma}\rangle$
- Better to start with $\pi^0(\eta, \eta') \rightarrow \gamma^* \gamma^*$

$\pi^{\rm 0}$ contribution

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
π^0,η,η^\prime	85±13	$82.7{\pm}6.4$	$83{\pm}12$	114±10	-	$114{\pm}13$	99±16
π, K loops	$-19{\pm}13$	$-4.5{\pm}8.1$	_	_	-	$-19{\pm}19$	$-19{\pm}13$
π, K loops + other subleading in N_c	-	-	_	$0{\pm}10$	-	_	_
axial vectors	$2.5{\pm}1.0$	$1.7{\pm}1.7$	_	22 ± 5	-	$15{\pm}10$	22 ± 5
scalars	$-6.8{\pm}2.0$	_	_	_	-	-7 ± 7	-7 ± 2
quark loops	$21{\pm}3$	$9.7{\pm}11.1$	-	-	-	2.3	$21{\pm}3$
total	83±32	89.6 ± 15.4	80±40	136 ± 25	110±40	105 ± 26	116 ± 39

• summary table [Jegerlehner, Nyffeler, Phys.Rept.477:1-110,2009]

- $\pi^0(\eta, \eta') \rightarrow \gamma^* \gamma^*$ are consistent to total contributions
- Among three PS mesons, π^0 takes about $\tilde{7}0\%$
- ▶ calulation on the $\pi^0 \to \gamma^* \gamma^*$ can be duplicated to the η , η' sector

Non-perturbative nature

• Invariant mass spectrum for two-photon

- Three spikes presents three bound states: π^0 , η , η'
- Bound states \rightarrow confinement \rightarrow LQCD

Rho mass

Xu Feng (KEK)

Two-Photon Decay of Neutral Pion in LatticeLattice 2012, Cairns, Australia 22 / 18