Electromagnetic Form-Factors of the $\Lambda(1405)$ in (2+1)-flavour Lattice QCD

Ben Menadue

CSSM, The University of Adelaide

Waseem Kamleh, Derek Leinweber Selim Mahbub, and Ben Owen

June 28, 2012

First Results

Outline

Background

Analysis Techniques

Correlation Matrix Method Extracting Form Factors

First Results

Electric Form Factors Magnetic Form Factor Effect of Partial Quenching

Conclusion

The $\Lambda(1405)$

• The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.

The $\Lambda(1405)$

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- It has a mass of 1405.1 MeV.
 - □ This is lower than the lowest odd-parity nucleon state, even though it has has a valence strange quark.

The A(1405)

- The $\Lambda(1405)$ is the lowest-lying odd-parity state of the Λ baryon.
- It has a mass of 1405.1 MeV.
 - This is lower than the lowest odd-parity nucleon state, even though it has has a valence strange quark.
- What is special about this state? Why does it lie so low?

The $\Lambda(1405)$

• Our recent work has successfully isolated three low-lying states.

BM, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

 $\hfill\square$ An extrapolation of the trend to the physical pion mass reproduces the mass of the $\Lambda(1405).$

The Λ(1405)

The $\Lambda(1405)$

• Our recent work has successfully isolated three low-lying states.

BM, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

- $\hfill\square$ An extrapolation of the trend to the physical pion mass reproduces the mass of the $\Lambda(1405).$
- We used a correlation matrix analysis together with source and sink smearing.

The $\Lambda(1405)$

• Our recent work has successfully isolated three low-lying states.

BM, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

- $\hfill\square$ An extrapolation of the trend to the physical pion mass reproduces the mass of the $\Lambda(1405).$
- We used a correlation matrix analysis together with source and sink smearing.
- Using the same technique, we can investigate the electromagnetic structure of these states.

The A(1405)

• Our recent work has successfully isolated three low-lying states.

BM, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

- $\hfill\square$ An extrapolation of the trend to the physical pion mass reproduces the mass of the $\Lambda(1405).$
- We used a correlation matrix analysis together with source and sink smearing.
- Using the same technique, we can investigate the electromagnetic structure of these states.
 - $\hfill\square$ Negative-parity need to be careful with formalism.

Simulation Details

- We use the PACS-CS (2 + 1)-flavour lattices, available through the ILDG.
 - S. Aoki, et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
 - $\hfill\square$ Lattice size of $32^3\times 64$ with $\beta=1.90.$
 - □ Physical lattice spacing of a = 0.0907(33) fm.
 - □ 5 pion masses, ranging from 640 MeV down to 156 MeV.
 - \Box Fixed strange quark $\kappa_s = 0.13640$.

Simulation Details

• We use the PACS-CS (2+1)-flavour lattices, available through the ILDG.

S. Aoki, et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- \Box Lattice size of $32^3 \times 64$ with $\beta = 1.90$.
- □ Physical lattice spacing of a = 0.0907(33) fm.
- □ 5 pion masses, ranging from 640 MeV down to 156 MeV.
- \Box Fixed strange quark $\kappa_s = 0.13640$.
 - This gives a kaon that's slightly too heavy, so we partially quench the strange quark sector by using κ_s = 0.13665 for the valence quarks.

Simulation Details

• We use the PACS-CS (2+1)-flavour lattices, available through the ILDG.

S. Aoki, et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

- $\hfill\square$ Lattice size of $32^3\times 64$ with $\beta=1.90.$
- □ Physical lattice spacing of a = 0.0907(33) fm.
- □ 5 pion masses, ranging from 640 MeV down to 156 MeV.
- \Box Fixed strange quark $\kappa_s = 0.13640$.
 - This gives a kaon that's slightly too heavy, so we partially quench the strange quark sector by using κ_s = 0.13665 for the valence quarks.
- We focus on the heaviest quark mass, with $\kappa_{u,d} = 0.13700$.
 - □ There are 400 independent configurations available.
 - $\hfill\square$ We have analysed 128 configurations so far first look.

Correlation Matrix Analysis

Consider a set of N operators \u03c6_i(x) that couple to the baryon we are interested in.

Correlation Matrix Analysis

- Consider a set of N operators \u03c6_i(x) that couple to the baryon we are interested in.
- We calculate the N × N matrix of cross-correlation functions from these operators,

$$\begin{split} G_{ij}(t,\mathbf{p}) &= \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\mathbf{p}\cdot\mathbf{x}} \operatorname{tr} \left(\Gamma \left\langle \Omega | \chi_i(x,t) \overline{\chi}_j(0) | \Omega \right\rangle \right) \\ &= \sum_{\alpha=1}^N Z_i^{\alpha}(\mathbf{p}) Z_j^{\alpha\dagger}(\mathbf{p}) \mathrm{e}^{-E_{\alpha}(\mathbf{p})t} \operatorname{tr} \left(\Gamma \sum_{s} u^{\alpha}(p,s) \overline{u}^{\alpha}(p,s) \right), \end{split}$$

where Z_i^{α} and $Z_i^{\alpha\dagger}$ are the couplings of the operator χ_i to the state α at the source and sink, respectively.

Correlation Matrix Analysis

Construct a set of N "perfect" operators φ_α(x) that completely isolate the N lowest states, so that

$$\langle \Omega | \phi^{\alpha} | \beta, \boldsymbol{p}, \boldsymbol{s} \rangle = \delta^{\alpha \beta} \mathcal{Z}^{\alpha}(\mathbf{p}) u(\boldsymbol{p}, \boldsymbol{s}).$$

Correlation Matrix Analysis

Construct a set of N "perfect" operators φ_α(x) that completely isolate the N lowest states, so that

$$\langle \Omega | \phi^{\alpha} | \beta, p, s \rangle = \delta^{\alpha \beta} \mathcal{Z}^{\alpha}(\mathbf{p}) u(p, s).$$

Using the linearity of the operator space, we write

$$\phi_{lpha} = \sum_{i} v_{i}^{lpha}(\mathbf{p})\chi_{i}, \text{ and}$$

 $\overline{\phi}_{lpha} = \sum_{i} u_{i}^{lpha}(\mathbf{p})\overline{\chi}_{i}.$

Correlation Matrix Analysis

The coefficient-vectors u^α and v^α form the left and right generalised eigenvectors of the matrices G(t₀ + Δt) and G(t₀):

$$G(t_0 + \Delta t) \mathbf{u}^{\alpha} = e^{-m_{\alpha}\Delta t} G(t_0) \mathbf{u}^{\alpha}$$
$$\mathbf{v}^{\alpha \top} G(t_0 + \Delta t) = e^{-m_{\alpha}\Delta t} \mathbf{v}^{\alpha \top} G(t_0).$$

Correlation Matrix Analysis

The coefficient-vectors u^α and v^α form the left and right generalised eigenvectors of the matrices G(t₀ + Δt) and G(t₀):

$$G(t_0 + \Delta t) \mathbf{u}^{\alpha} = e^{-m_{\alpha} \Delta t} G(t_0) \mathbf{u}^{\alpha}$$
$$\mathbf{v}^{\alpha \top} G(t_0 + \Delta t) = e^{-m_{\alpha} \Delta t} \mathbf{v}^{\alpha \top} G(t_0).$$

• Furthermore, these coefficient-vectors diagonalise *G*:

$$\mathbf{v}^{lpha op} G(t) \mathbf{u}^eta \propto \delta^{lphaeta} \mathrm{e}^{-m_lpha t}$$

Correlation Matrix Analysis

The coefficient-vectors u^α and v^α form the left and right generalised eigenvectors of the matrices G(t₀ + Δt) and G(t₀):

$$G(t_0 + \Delta t) \mathbf{u}^{\alpha} = e^{-m_{\alpha}\Delta t} G(t_0) \mathbf{u}^{\alpha}$$
$$\mathbf{v}^{\alpha \top} G(t_0 + \Delta t) = e^{-m_{\alpha}\Delta t} \mathbf{v}^{\alpha \top} G(t_0).$$

• Furthermore, these coefficient-vectors diagonalise *G*:

$$\mathbf{v}^{lpha op} G(t) \mathbf{u}^eta \propto \delta^{lphaeta} \mathrm{e}^{-m_lpha t}$$

Using this, we can define eigenstate-projected correlation functions

$$G^{lpha}(t) := \mathbf{v}^{lpha op} G(t) \mathbf{u}^{lpha}$$
,

which contain correlation functions for a single energy eigenstate.

8 of 24

- To ensure the successful isolation of the energy eigenstates, need to begin with a set of sufficiently orthogonal operators.
 - If the operators are not sufficiently orthogonal, the matrix becomes too ill-conditioned to solve for the generalised eigenvectors.

- To ensure the successful isolation of the energy eigenstates, need to begin with a set of sufficiently orthogonal operators.
 - □ If the operators are not sufficiently orthogonal, the matrix becomes too ill-conditioned to solve for the generalised eigenvectors.
- There are quite a few operators that couple to the Λ baryon.

- To ensure the successful isolation of the energy eigenstates, need to begin with a set of sufficiently orthogonal operators.
 - If the operators are not sufficiently orthogonal, the matrix becomes too ill-conditioned to solve for the generalised eigenvectors.
- There are quite a few operators that couple to the Λ baryon.
 - $\hfill\square$ We can exploit the possible flavour symmetry structures:

$$\begin{split} \chi_i^8 &= \epsilon^{abc} (2(u_a^\top A_i d_b) B_i s_c + (u_a^\top A_i s_b) B_i d_c - (d_a^\top A_i s_b) B_i u_c) / \sqrt{6}, \\ \chi_i^1 &= -2 \epsilon^{abc} (-(u_a^\top A_i d_b) B_i s_c + (u_a^\top A_i s_b) B_i d_c - (d_a^\top A_i s_b) B_i u_c), \\ \chi_i^c &= \epsilon^{abc} ((u_a^\top A_i s_b) B_i d_c - (d_a^\top A_i s_b) B_i u_c) / \sqrt{2}, \end{split}$$

- To ensure the successful isolation of the energy eigenstates, need to begin with a set of sufficiently orthogonal operators.
 - If the operators are not sufficiently orthogonal, the matrix becomes too ill-conditioned to solve for the generalised eigenvectors.
- There are quite a few operators that couple to the Λ baryon.
 We can exploit the possible flavour symmetry structures:

$$\begin{split} \chi_i^8 &= \epsilon^{abc} (2(u_a^\top A_i d_b) B_i s_c + (u_a^\top A_i s_b) B_i d_c - (d_a^\top A_i s_b) B_i u_c) / \sqrt{6}, \\ \chi_i^1 &= -2 \epsilon^{abc} (-(u_a^\top A_i d_b) B_i s_c + (u_a^\top A_i s_b) B_i d_c - (d_a^\top A_i s_b) B_i u_c), \\ \chi_i^c &= \epsilon^{abc} ((u_a^\top A_i s_b) B_i d_c - (d_a^\top A_i s_b) B_i u_c) / \sqrt{2}, \end{split}$$

□ We can also use different Dirac structures:

$$\begin{array}{ll} A_1=C\gamma_5, & A_2=C, & A_4=C\gamma_5\gamma_4\\ B_1=\mathbb{I}, & B_2=\gamma_5, & B_4=\mathbb{I} \end{array}$$

- This gives 7 independent operators.
 - □ For the flavour-singlet structure χ_i^1 , the different Dirac structures are related through a Fierz transformation.

- This gives 7 independent operators.
 - □ For the flavour-singlet structure χ_i^1 , the different Dirac structures are related through a Fierz transformation.
- To further extend our operator basis, we use gauge-invariant Gaussian smearing at the source and sink.
 - $\hfill\square$ We use 16, 35, 100, and 200 sweeps of smearing.

- This gives 7 independent operators.
 - □ For the flavour-singlet structure χ_i^1 , the different Dirac structures are related through a Fierz transformation.
- To further extend our operator basis, we use gauge-invariant Gaussian smearing at the source and sink.

 $\hfill\square$ We use 16, 35, 100, and 200 sweeps of smearing.

- This gives a total of $4 \times (3 + 3 + 1) = 28$ operators.
 - Not enough signal to isolate 28 states, but we can use smaller subsets and compare to ensure we have completely isolated the states.

- This gives 7 independent operators.
 - □ For the flavour-singlet structure χ_i^1 , the different Dirac structures are related through a Fierz transformation.
- To further extend our operator basis, we use gauge-invariant Gaussian smearing at the source and sink.

 $\hfill\square$ We use 16, 35, 100, and 200 sweeps of smearing.

- This gives a total of $4 \times (3 + 3 + 1) = 28$ operators.
 - □ Not enough signal to isolate 28 states, but we can use smaller subsets and compare to ensure we have completely isolated the states.
 - □ These results use χ_1^1 , χ_1^8 , and χ_2^8 , with 16 and 100 sweeps, giving a 6 × 6 matrix.

 To extract form factors we calculate the both the two-point and three-point correlation matrices,

$$\mathcal{G}_{ij}(\Gamma; t_2; \mathbf{p}') = \sum_{\mathbf{x}_2} e^{-i\mathbf{p}' \cdot \mathbf{x}_2} \operatorname{tr}(\Gamma \langle \Omega | \chi_i(x_2) \overline{\chi}_j(0) | \Omega \rangle)$$

and

$$\begin{aligned} \mathcal{G}_{ij}^{\mu}(\Gamma;t_{2},t_{1};\mathbf{p}',\mathbf{p}) \\ &= \sum_{\mathbf{x}_{1},\mathbf{x}_{2}} \mathrm{e}^{-\mathrm{i}\mathbf{p}'\cdot\mathbf{x}_{2}} \mathrm{e}^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_{1}} \operatorname{tr}(\Gamma \langle \Omega | \chi_{i}(x_{2}) j^{\mu}(x_{1}) \overline{\chi}_{j}(0) | \Omega \rangle), \end{aligned}$$

where the χ_i and χ_j are interpolating fields that couple to the state of interest, and $x_i := (\mathbf{x}_i, t_i)$.

11 of 24

We use the correlation matrix analysis to project out both two- and three-point correlation functions for individual states:

$$egin{aligned} &\mathcal{G}_lpha(\mathsf{\Gamma};t_2;\mathbf{p}'):=v_i^lpha(\mathbf{p}')\mathcal{G}_{ij}(\mathsf{\Gamma};t_2;\mathbf{p}')u_j^lpha(\mathbf{p}'), \ &\mathcal{G}_lpha^\mu(\mathsf{\Gamma};t_2,t_1;\mathbf{p}',\mathbf{p}):=v_i^lpha(\mathbf{p}')\mathcal{G}_{ij}^\mu(\mathsf{\Gamma};t_2,t_1;\mathbf{p}',\mathbf{p})u_j^lpha(\mathbf{p}). \end{aligned}$$

• We use the correlation matrix analysis to project out both two- and three-point correlation functions for individual states:

$$\mathcal{G}_{\alpha}(\Gamma; t_{2}; \mathbf{p}') := v_{i}^{\alpha}(\mathbf{p}')\mathcal{G}_{ij}(\Gamma; t_{2}; \mathbf{p}')u_{j}^{\alpha}(\mathbf{p}'),$$

$$\mathcal{G}_{\alpha}^{\mu}(\Gamma; t_{2}, t_{1}; \mathbf{p}', \mathbf{p}) := v_{i}^{\alpha}(\mathbf{p}')\mathcal{G}_{ij}^{\mu}(\Gamma; t_{2}, t_{1}; \mathbf{p}', \mathbf{p})u_{j}^{\alpha}(\mathbf{p}).$$

• The eigenvectors \mathbf{u}^{α} and \mathbf{v}^{α} are momentum dependent.

We use the correlation matrix analysis to project out both two- and three-point correlation functions for individual states:

$$\mathcal{G}_{\alpha}(\Gamma; t_{2}; \mathbf{p}') := v_{i}^{\alpha}(\mathbf{p}')\mathcal{G}_{ij}(\Gamma; t_{2}; \mathbf{p}')u_{j}^{\alpha}(\mathbf{p}'),$$

$$\mathcal{G}_{\alpha}^{\mu}(\Gamma; t_{2}, t_{1}; \mathbf{p}', \mathbf{p}) := v_{i}^{\alpha}(\mathbf{p}')\mathcal{G}_{ij}^{\mu}(\Gamma; t_{2}, t_{1}; \mathbf{p}', \mathbf{p})u_{j}^{\alpha}(\mathbf{p}).$$

- The eigenvectors \mathbf{u}^{α} and \mathbf{v}^{α} are momentum dependent.
- We use the two-point eigenvectors to project the three-point correlation functions.

• For sufficiently large $t_2 - t_1$ and t_1 , $\mathcal{G}^{\mu}_{\alpha}$ takes the form

$$\sum_{s,s'} e^{-\mathcal{E}_{p'}(t_2-t_1)} e^{-\mathcal{E}_{p}t_1} \operatorname{tr}(\Gamma \langle \Omega | \chi_i | p', s' \rangle \langle p', s' | j^{\mu} | p, s \rangle \langle p, s | \overline{\chi}_j | \Omega \rangle),$$

where the current matrix element is

$$\langle p', s'|j^{\mu}|p, s\rangle = \left(\frac{M^2}{E_{\mathbf{p}}E_{\mathbf{p}'}}\right)^{1/2} \overline{u} \left(F_1(q^2)\gamma^{\mu} + \mathrm{i}F_2(q^2)\sigma^{\mu\nu}\frac{q_{\nu}}{2M}\right) u,$$

with q := p' - p being the momentum transferred.

• For sufficiently large $t_2 - t_1$ and t_1 , $\mathcal{G}^{\mu}_{\alpha}$ takes the form

 $\sum_{s,s'} e^{-\mathcal{E}_{p'}(t_2-t_1)} e^{-\mathcal{E}_{p}t_1} \operatorname{tr}(\Gamma \langle \Omega | \chi_i | p', s' \rangle \langle p', s' | j^{\mu} | p, s \rangle \langle p, s | \overline{\chi}_j | \Omega \rangle),$

where the current matrix element is

$$\langle p', s'|j^{\mu}|p, s\rangle = \left(\frac{M^2}{E_{\mathbf{p}}E_{\mathbf{p}'}}\right)^{1/2} \overline{u} \left(F_1(q^2)\gamma^{\mu} + \mathrm{i}F_2(q^2)\sigma^{\mu\nu}\frac{q_{\nu}}{2M}\right) u,$$

with q := p' - p being the momentum transferred.

• The F_1 and F_2 form factors are related to the Sachs forms through

$$\mathcal{G}_{\mathsf{E}}(q^2) = F_1(q^2) - rac{q^2}{(2M)^2}F_2(q^2)$$

 $\mathcal{G}_{\mathsf{M}}(q^2) = F_1(q^2) + F_2(q^2)$

• To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$\begin{aligned} R^{\mu}_{\alpha}(\boldsymbol{\Gamma}_{2},\boldsymbol{\Gamma}_{1};t_{2},t_{1};\boldsymbol{p}',\boldsymbol{p}) \\ &:= \left(\frac{\mathcal{G}^{\mu}_{\alpha}(\boldsymbol{\Gamma}_{1};t_{2},t_{1};\boldsymbol{p}',\boldsymbol{p})\mathcal{G}^{\mu}_{\alpha}(\boldsymbol{\Gamma}_{1};t_{2},t_{1};\boldsymbol{p},\boldsymbol{p}')}{\mathcal{G}_{\alpha}(\boldsymbol{\Gamma}_{2};t_{2};\boldsymbol{p}')\mathcal{G}_{\alpha}(\boldsymbol{\Gamma}_{2};t_{2};\boldsymbol{p})}\right)^{1/2} \end{aligned}$$

We then define the reduced ratio

$$\overline{R}^{\mu}_{\alpha} := \left(\frac{2E_{\mathbf{p}}}{E_{\mathbf{p}} + M}\right)^{1/2} \left(\frac{2E_{\mathbf{p}'}}{E_{\mathbf{p}'} + M}\right)^{1/2} R^{\mu}_{\alpha}$$

14 of 24

A suitable choice of Γ₁ and Γ₂ allows us to extract the Sachs form factors:

$$\mathcal{G}_{\mathsf{E}}^{\alpha\pm}(q^2) = \overline{R}^4_{\alpha}(\Gamma_4^{\pm}, \Gamma_4^{\pm}; \mathbf{q}, \mathbf{0})$$
$$|\epsilon_{ijk}q^i|\mathcal{G}_{\mathsf{M}}^{\alpha\pm}(q^2) = (E_{\mathbf{q}} + M)\overline{R}^k_{\alpha}(\Gamma_4^{\pm}, \Gamma_j^{\pm}; \mathbf{q}, \mathbf{0}),$$

A suitable choice of Γ₁ and Γ₂ allows us to extract the Sachs form factors:

$$\mathcal{G}_{\mathsf{E}}^{\alpha\pm}(q^2) = \overline{R}_{\alpha}^4(\Gamma_4^{\pm}, \Gamma_4^{\pm}; \mathbf{q}, \mathbf{0})$$
$$|\epsilon_{ijk}q^i|\mathcal{G}_{\mathsf{M}}^{\alpha\pm}(q^2) = (E_{\mathbf{q}} + M)\overline{R}_{\alpha}^k(\Gamma_4^{\pm}, \Gamma_j^{\pm}; \mathbf{q}, \mathbf{0}),$$

where for positive parity,

$$\Gamma_j^+ = rac{1}{2} egin{bmatrix} \sigma_j & 0 \ 0 & 0 \end{bmatrix}$$
, $\Gamma_4^+ = rac{1}{2} egin{bmatrix} \mathbb{I} & 0 \ 0 & 0 \end{bmatrix}$,

A suitable choice of Γ₁ and Γ₂ allows us to extract the Sachs form factors:

$$\mathcal{G}_{\mathsf{E}}^{\alpha\pm}(q^2) = \overline{R}_{\alpha}^4(\Gamma_4^{\pm}, \Gamma_4^{\pm}; \mathbf{q}, \mathbf{0})$$
$$|\epsilon_{ijk}q^i|\mathcal{G}_{\mathsf{M}}^{\alpha\pm}(q^2) = (E_{\mathbf{q}} + M)\overline{R}_{\alpha}^k(\Gamma_4^{\pm}, \Gamma_j^{\pm}; \mathbf{q}, \mathbf{0}),$$

where for positive parity,

$$\Gamma_j^+ = rac{1}{2} egin{bmatrix} \sigma_j & 0 \ 0 & 0 \end{bmatrix}$$
, $\Gamma_4^+ = rac{1}{2} egin{bmatrix} \mathbb{I} & 0 \ 0 & 0 \end{bmatrix}$,

and for negative parity,

$$\Gamma_j^- = \gamma_5 \Gamma_j^+ \gamma_5 = \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \sigma_j \end{bmatrix}, \quad \Gamma_4^- = \gamma_5 \Gamma_4^+ \gamma_5 = \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{I} \end{bmatrix}.$$

State $1 - \Lambda(1405)$

State $1 - \Lambda(1405)$

Background 000

First Results

State 2

Background 000

First Results

State 3

State $1 - \Lambda(1405)$

Background 000

State 2

Background 000

State 3

Remarks

- Conclusions
 - Demonstrated the concept of extracting negative-parity baryon EM form factors using correlation matrix techniques.
 - $\hfill\square$ First look at the EM form factors for negative-parity A states, particularly the A(1405).
- Further Work
 - $\hfill\square$ Complete the calculation for the remainder of this ensemble.
 - $\hfill\square$ Repeat the analysis for the other light quark $\kappa_{\rm u,d}.$
 - Include multi-particle operators to isolate and exclude any multi-particle states.