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Background Analysis Techniques First Results Conclusion

The Λ(1405)

� The Λ(1405) is the lowest-lying odd-parity state of the Λ baryon.

� It has a mass of 1405.1 MeV.

� This is lower than the lowest odd-parity nucleon state, even though it
has has a valence strange quark.

� What is special about this state? Why does it lie so low?
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The Λ(1405)

� Our recent work has successfully isolated three low-lying states.
BM, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

� An extrapolation of the trend to the physical pion mass reproduces
the mass of the Λ(1405).

� We used a correlation matrix analysis together with source and sink
smearing.

� Using the same technique, we can investigate the electromagnetic
structure of these states.

� Negative-parity – need to be careful with formalism.
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Simulation Details

� We use the PACS-CS (2 + 1)-flavour lattices, available through the
ILDG.

S. Aoki, et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)

� Lattice size of 323 × 64 with β = 1.90.
� Physical lattice spacing of a = 0.0907(33) fm.
� 5 pion masses, ranging from 640 MeV down to 156 MeV.
� Fixed strange quark κs = 0.13640.

� This gives a kaon that’s slightly too heavy, so we partially quench the
strange quark sector by using κs = 0.13665 for the valence quarks.

� We focus on the heaviest quark mass, with κu,d = 0.13700.
� There are 400 independent configurations available.
� We have analysed 128 configurations so far – first look.
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Background Analysis Techniques First Results Conclusion

Correlation Matrix Analysis

� Consider a set of N operators χi (x) that couple to the baryon we
are interested in.

� We calculate the N × N matrix of cross-correlation functions from
these operators,

Gij(t,p) =
∑
x

e−ip·x tr (Γ 〈Ω|χi (x , t)χj(0)|Ω〉)

=
N∑
α=1

Zαi (p)Zα†j (p)e−Eα(p)t tr

(
Γ
∑
s

uα(p, s)uα(p, s)

)
,

where Zαi and Zα†i are the couplings of the operator χi to the
state α at the source and sink, respectively.
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Background Analysis Techniques First Results Conclusion

Correlation Matrix Analysis

� Construct a set of N “perfect” operators φα(x) that completely
isolate the N lowest states, so that

〈Ω|φα|β, p, s〉 = δαβZα(p)u(p, s).

� Using the linearity of the operator space, we write

φα =
∑
i

vαi (p)χi , and

φα =
∑
i

uαi (p)χi .
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Background Analysis Techniques First Results Conclusion

Correlation Matrix Analysis

� The coefficient-vectors uα and vα form the left and right
generalised eigenvectors of the matrices G (t0 + ∆t) and G (t0):

G (t0 + ∆t)uα = e−mα∆tG (t0)uα

vα>G (t0 + ∆t) = e−mα∆tvα>G (t0).

� Furthermore, these coefficient-vectors diagonalise G :

vα>G (t)uβ ∝ δαβe−mαt

� Using this, we can define eigenstate-projected correlation functions

Gα(t) := vα>G (t)uα,

which contain correlation functions for a single energy eigenstate.
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Background Analysis Techniques First Results Conclusion

Choice of Operators
� To ensure the successful isolation of the energy eigenstates, need

to begin with a set of sufficiently orthogonal operators.
� If the operators are not sufficiently orthogonal, the matrix becomes

too ill-conditioned to solve for the generalised eigenvectors.

� There are quite a few operators that couple to the Λ baryon.

� We can exploit the possible flavour symmetry structures:

χ8
i = εabc(2(u>a Aidb)Bi sc + (u>a Ai sb)Bidc − (d>

a Ai sb)Biuc)/
√

6,

χ1
i = −2εabc(−(u>a Aidb)Bi sc + (u>a Ai sb)Bidc − (d>

a Ai sb)Biuc),

χc
i = εabc((u>a Ai sb)Bidc − (d>

a Ai sb)Biuc)/
√

2,

� We can also use different Dirac structures:

A1 = Cγ5, A2 = C , A4 = Cγ5γ4

B1 = I, B2 = γ5, B4 = I
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Background Analysis Techniques First Results Conclusion

Choice of Operators
� This gives 7 independent operators.

� For the flavour-singlet structure χ1
i , the different Dirac structures are

related through a Fierz transformation.

� To further extend our operator basis, we use gauge-invariant
Gaussian smearing at the source and sink.
� We use 16, 35, 100, and 200 sweeps of smearing.

� This gives a total of 4× (3 + 3 + 1) = 28 operators.
� Not enough signal to isolate 28 states, but we can use smaller subsets

and compare to ensure we have completely isolated the states.

� These results use χ1
1, χ8

1, and χ8
2, with 16 and 100 sweeps, giving a

6× 6 matrix.
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Background Analysis Techniques First Results Conclusion

Extracting Form Factors

� To extract form factors we calculate the both the two-point and
three-point correlation matrices,

Gij(Γ; t2;p′) =
∑
x2

e−ip′·x2 tr(Γ 〈Ω|χi (x2)χj(0)|Ω〉)

and

Gµij (Γ; t2, t1;p′,p)

=
∑
x1, x2

e−ip′·x2ei(p
′−p)·x1 tr(Γ 〈Ω|χi (x2)jµ(x1)χj(0)|Ω〉),

where the χi and χj are interpolating fields that couple to the
state of interest, and xi := (xi , ti ).
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Background Analysis Techniques First Results Conclusion

Extracting Form Factors

� We use the correlation matrix analysis to project out both two- and
three-point correlation functions for individual states:

Gα(Γ; t2;p′) := vαi (p′)Gij(Γ; t2;p′)uαj (p′),

Gµα(Γ; t2, t1;p′,p) := vαi (p′)Gµij (Γ; t2, t1;p′,p)uαj (p).

� The eigenvectors uα and vα are momentum dependent.

� We use the two-point eigenvectors to project the three-point
correlation functions.
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Background Analysis Techniques First Results Conclusion

Extracting Form Factors

� For sufficiently large t2 − t1 and t1, Gµα takes the form∑
s, s′

e−Ep′ (t2−t1)e−Ept1 tr(Γ 〈Ω|χi |p′, s ′〉 〈p′, s ′|jµ|p, s〉 〈p, s|χj |Ω〉),

where the current matrix element is

〈p′, s ′|jµ|p, s〉 =

(
M2

EpEp′

)1/2

u
(
F1(q2)γµ + iF2(q2)σµν

qν
2M

)
u,

with q := p′ − p being the momentum transferred.

� The F1 and F2 form factors are related to the Sachs forms through

GE(q2) = F1(q2)− q2

(2M)2
F2(q2)

GM(q2) = F1(q2) + F2(q2)
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Background Analysis Techniques First Results Conclusion

Extracting Form Factors

� To eliminate the time dependence of the three-point correlation
function, we construct the ratio

Rµα(Γ2, Γ1; t2, t1;p′,p)

:=

(
Gµα(Γ1; t2, t1;p′,p)Gµα(Γ1; t2, t1;p,p′)

Gα(Γ2; t2;p′)Gα(Γ2; t2;p)

)1/2

� We then define the reduced ratio

Rµα :=

(
2Ep

Ep + M

)1/2( 2Ep′

Ep′ + M

)1/2

Rµα
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Background Analysis Techniques First Results Conclusion

Extracting Form Factors

� A suitable choice of Γ1 and Γ2 allows us to extract the Sachs form
factors:

Gα±E (q2) = R4
α(Γ±4 , Γ±4 ;q, 0)

|εijkqi |Gα±M (q2) = (Eq + M)Rk
α(Γ±4 , Γ±j ;q, 0),

where for positive parity,

Γ+
j =

1

2

[
σj 0
0 0

]
, Γ+

4 =
1

2

[
I 0
0 0

]
,

and for negative parity,

Γ−j = γ5Γ+
j γ5 =

1

2

[
0 0
0 σj

]
, Γ−4 = γ5Γ+

4 γ5 =
1

2

[
0 0
0 I

]
.
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State 1 – Λ(1405)
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State 2

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G E

up down strange total

17 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

State 3

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G E

up down strange total

18 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

State 1 – Λ(1405)

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G M
(μ

N
)

up down strange total

19 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

State 2

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G M
(μ

N
)

up down strange total

20 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

State 3

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G M
(μ

N
)

up down strange total

21 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

GE – State 1 – Λ(1405)

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G E

up down strange total

22 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

GE – State 1 – Λ(1405)

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G E

up down strange total

22 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

GM – State 1 – Λ(1405)

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G M
(μ

N
)

up down strange total

23 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

GM – State 1 – Λ(1405)

20 24 28 32 36

−0.4

−0.2

0.0

0.2

0.4

0.6

Time

G M
(μ

N
)

up down strange total

23 of 24
Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

Remarks
� Conclusions

� Demonstrated the concept of extracting negative-parity baryon EM
form factors using correlation matrix techniques.

� First look at the EM form factors for negative-parity Λ states,
particularly the Λ(1405).

� Further Work
� Complete the calculation for the remainder of this ensemble.
� Repeat the analysis for the other light quark κu,d.
� Include multi-particle operators to isolate and exclude any

multi-particle states.
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