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The A(1405)
® The A(1405) is the lowest-lying odd-parity state of the A baryon.
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® |t has a mass of 1405.1 MeV.

O This is lower than the lowest odd-parity nucleon state, even though it
has has a valence strange quark.
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The A(1405)

® The A(1405) is the lowest-lying odd-parity state of the A baryon.
® |t has a mass of 1405.1 MeV.

O This is lower than the lowest odd-parity nucleon state, even though it
has has a valence strange quark.

® What is special about this state? Why does it lie so low?
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The A(1405)

® Qur recent work has successfully isolated three low-lying states.
BM, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)

0 An extrapolation of the trend to the physical pion mass reproduces
the mass of the A(1405).
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0 An extrapolation of the trend to the physical pion mass reproduces

the mass of the A(1405).
0 We used a correlation matrix analysis together with source and sink

smearing.
® Using the same technique, we can investigate the electromagnetic
structure of these states.
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® Qur recent work has successfully isolated three low-lying states.
BM, W. Kamleh, D. B. Leinweber, M. S. Mahbub, Phys. Rev. Lett. 108, 112001 (2012)
0 An extrapolation of the trend to the physical pion mass reproduces

the mass of the A(1405).
0 We used a correlation matrix analysis together with source and sink

smearing.
® Using the same technique, we can investigate the electromagnetic
structure of these states.
0 Negative-parity — need to be careful with formalism.
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Simulation Details

® We use the PACS-CS (2 + 1)-flavour lattices, available through the
ILDG.

S. Aoki, et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
Lattice size of 323 x 64 with 3 = 1.90.
Physical lattice spacing of a = 0.0907(33) fm.

5 pion masses, ranging from 640 MeV down to 156 MeV.
Fixed strange quark xs = 0.13640.
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B This gives a kaon that's slightly too heavy, so we partially quench the
strange quark sector by using ks = 0.13665 for the valence quarks.
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Simulation Details

® We use the PACS-CS (2 + 1)-flavour lattices, available through the

ILDG.
S. Aoki, et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
O Lattice size of 323 x 64 with 8 = 1.90.
O Physical lattice spacing of a = 0.0907(33) fm.
0 5 pion masses, ranging from 640 MeV down to 156 MeV.
m

Fixed strange quark xs = 0.13640.

B This gives a kaon that’s slightly too heavy, so we partially quench the
strange quark sector by using ks = 0.13665 for the valence quarks.

® We focus on the heaviest quark mass, with x, 4 = 0.13700.

0 There are 400 independent configurations available.
0 We have analysed 128 configurations so far — first look.
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Correlation Matrix Analysis

m Consider a set of N operators x;(x) that couple to the baryon we
are interested in.
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Correlation Matrix Analysis

m Consider a set of N operators x;(x) that couple to the baryon we
are interested in.

m We calculate the N x N matrix of cross-correlation functions from
these operators,

6i(t:p) = 3o ™t (1 (e OB O))

_ Zza ZaT ) Ea(P)ttr (FZ P, )> ,

where Z* and Z,-O‘T are the couplings of the operator ; to the
state a at the source and sink, respectively.
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Correlation Matrix Analysis

m Construct a set of N “perfect” operators ¢, (x) that completely
isolate the N lowest states, so that

(Q6%18, p, s) = §°°Z2%(p)u(p, 5).
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Correlation Matrix Analysis

m Construct a set of N “perfect” operators ¢, (x) that completely
isolate the N lowest states, so that

(Q6%18, p, s) = §°°Z2%(p)u(p, 5).

® Using the linearity of the operator space, we write

$a =) vi'(p)xi, and

i

G = Z ui* (P)Xi-

1

7 of 24

Ben Menadue — CSSM, The University of Adelaide



Background Analysis Techniques First Results Conclusion

[e]e]e} [e]e] Jele]ele]ele]e) 00000000

Correlation Matrix Analysis

® The coefficient-vectors u® and v® form the left and right
generalised eigenvectors of the matrices G(tp + At) and G(tp):

G(ty + At)u® = e MBEG(1p)u®
veTG(tg + At) = e AT G(1p).
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generalised eigenvectors of the matrices G(tp + At) and G(tp):

G(ty + At)u® = e MBEG(1p)u®
veTG(tg + At) = e AT G(1p).

m Furthermore, these coefficient-vectors diagonalise G:

ve T G(t)u? o §9Pe=mat
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Correlation Matrix Analysis

® The coefficient-vectors u® and v® form the left and right
generalised eigenvectors of the matrices G(tp + At) and G(tp):

G(ty + At)u® = e MBEG(1p)u®
veTG(tg + At) = e AT G(1p).

m Furthermore, these coefficient-vectors diagonalise G:
ve T G(t)u? o §9Pe=mat
m Using this, we can define eigenstate-projected correlation functions
G(t) == v G(t)u®,

which contain correlation functions for a single energy eigenstate.
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Choice of Operators

® To ensure the successful isolation of the energy eigenstates, need
to begin with a set of sufficiently orthogonal operators.
O If the operators are not sufficiently orthogonal, the matrix becomes
too ill-conditioned to solve for the generalised eigenvectors.
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Choice of Operators

m To ensure the successful isolation of the energy eigenstates, need
to begin with a set of sufficiently orthogonal operators.
O If the operators are not sufficiently orthogonal, the matrix becomes
too ill-conditioned to solve for the generalised eigenvectors.
B There are quite a few operators that couple to the A baryon.
0 We can exploit the possible flavour symmetry structures:

X8 = €(2(u] Aidy)Bisc + (u) Aisp)Bid. — (d. Aisp)Biuc)/ V6,
X} = —2€abc(—(u;rA;db)B;Sc + (u;A,‘Sb)B,'dc — (daTA,'Sb)B,'uc),
X:-: = €abc((UIA,'Sb)B,'dc — (d;—A,'Sb)B,'UC)/\/E,
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Choice of Operators

m To ensure the successful isolation of the energy eigenstates, need
to begin with a set of sufficiently orthogonal operators.
O If the operators are not sufficiently orthogonal, the matrix becomes
too ill-conditioned to solve for the generalised eigenvectors.
B There are quite a few operators that couple to the A baryon.
0 We can exploit the possible flavour symmetry structures:
X8 = €(2(u] Aidp)Bjsc + (u] Aisp)Bide — (d) Aisp)Bjuc)/ V6,
X} = —2€abc(—(u;rA;db)B;Sc + (u;A,‘Sb)B,'dc — (daTA,'Sb)B,'uc),
X5 = €((u] Aisp)Bide — (d Aisp)Biuc)/ V2,

O We can also use different Dirac structures:
Ar=Cys, A=C, As=Cym
81:]1, 82275, B4:H
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Choice of Operators

® This gives 7 independent operators.

O For the flavour-singlet structure x}, the different Dirac structures are
related through a Fierz transformation.
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Choice of Operators

® This gives 7 independent operators.

O For the flavour-singlet structure x}, the different Dirac structures are
related through a Fierz transformation.

m To further extend our operator basis, we use gauge-invariant
Gaussian smearing at the source and sink.

0 We use 16, 35, 100, and 200 sweeps of smearing.
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Choice of Operators

® This gives 7 independent operators.

O For the flavour-singlet structure x}, the different Dirac structures are
related through a Fierz transformation.

m To further extend our operator basis, we use gauge-invariant
Gaussian smearing at the source and sink.

0 We use 16, 35, 100, and 200 sweeps of smearing.
m This gives a total of 4 x (34 3+ 1) = 28 operators.

o Not enough signal to isolate 28 states, but we can use smaller subsets
and compare to ensure we have completely isolated the states.
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Choice of Operators

® This gives 7 independent operators.
O For the flavour-singlet structure x}, the different Dirac structures are
related through a Fierz transformation.
m To further extend our operator basis, we use gauge-invariant
Gaussian smearing at the source and sink.
0 We use 16, 35, 100, and 200 sweeps of smearing.
® This gives a total of 4 x (3 + 3 + 1) = 28 operators.

o Not enough signal to isolate 28 states, but we can use smaller subsets
and compare to ensure we have completely isolated the states.

O These results use x1, X8, and X8, with 16 and 100 sweeps, giving a
6 x 6 matrix.
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Extracting Form Factors

m To extract form factors we calculate the both the two-point and
three-point correlation matrices,

Gi(T: 21 p') = D _ e~ P (T (Qxi () ,(0)|2))

and

gg(r; to, t1; ', p)
= D7 e PR (T (Qi ()" ()W (0)|),

X1, X2

where the x; and x; are interpolating fields that couple to the
state of interest, and x; := (x;, ;).
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Extracting Form Factors

®m We use the correlation matrix analysis to project out both two- and
three-point correlation functions for individual states:

Ga(T; t2;p") := v (p") Gy (T t2; p)uf (p'),
GA(T: ta, tri 0/, p) 1= Vi (PG} (T t2, 1P, P (P):
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B The eigenvectors u® and v® are momentum dependent.
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Extracting Form Factors

®m We use the correlation matrix analysis to project out both two- and
three-point correlation functions for individual states:

Go (T t2:0') 1= Vi (P) Gy (T t2: P)uf ('),
GA(T: ta, tri 0/, p) 1= Vi (PG} (T t2, 1P, P (P):

B The eigenvectors u® and v® are momentum dependent.

® We use the two-point eigenvectors to project the three-point
correlation functions.
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Extracting Form Factors

® For sufficiently large t, — t; and t;, G4 takes the form
> e ErmtlemBu (T (Qlxilp,s') (6, 5/l |p. s) (p. sIXG1Q)),
s, s’
where the current matrix element is
2 N\ 1/2 q
I _ T F (g~ L iFr(g? IW_V)
(p'.s'j*p, s) (EpEp'> U( g " +iF(g™)o™ S ) u,

with g := p’ — p being the momentum transferred.
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Extracting Form Factors

® For sufficiently large t, — t; and t;, G4 takes the form
> e ErmtlemBu (T (Qlxilp,s') (6, 5/l |p. s) (p. sIXG1Q)),
s, s
where the current matrix element is
2 \ 1/2 q
I _ T F (g~ L iFr(g? IW_V)
(p'.s'j*p, s) <EpEp'> U( g " +iF(g™)o™ S ) u,

with g := p’ — p being the momentum transferred.
®m The F; and F, form factors are related to the Sachs forms through

Ge(q®) = Fu(q?) — (2"7)25(&)

Gm(q®) = F1(a®) + F2(q?)
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Extracting Form Factors

® To eliminate the time dependence of the three-point correlation
function, we construct the ratio

RE(Ty,T1; to, t1; P, P)

_ (géf(rl: tr, t1;p,p)GL(T1; to, ta; P, P')) 12
' Ga(2; t2; p')Ga(l2; t2; P)

m \We then define the reduced ratio

o (26 12 1 2F, 1/2/?”
T \E+M Ey + M «
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Extracting Form Factors

m A suitable choice of I'1 and > allows us to extract the Sachs form
factors:

Gt (q?) = RA(TE,TF:q,0)
lesd' |Gy (6°) = (Eq + M)RA(TZ. 73 0,0),
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Extracting Form Factors

m A suitable choice of I'1 and > allows us to extract the Sachs form
factors:

Gt (q?) = RA(TE,TF:q,0)
lesd' |Gy (6°) = (Eq + M)RA(TZ. 73 0,0),

where for positive parity,

1[0; 0 1[I 0
+_ 1|9 +_ 1
rf‘z[o o]' 4 2[0 0}'
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Extracting Form Factors

m A suitable choice of I'1 and > allows us to extract the Sachs form

factors:
G¢*(q?) = RA(T7.T5:9,0)
lesd' |Gy (6°) = (Eq + M)RA(TZ. 73 0,0),

where for positive parity,

Jo2]0 0] "4 2[0 0]’
and for negative parity,
1[0 0] 1[0 0
- _ + _ - _ + _
rj —75rj 75—5 _0 o] A —'75r475—§|:0 ]I:|-
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Remarks

m Conclusions

0 Demonstrated the concept of extracting negative-parity baryon EM
form factors using correlation matrix techniques.

O First look at the EM form factors for negative-parity A states,
particularly the A(1405).

®m Further Work

0 Complete the calculation for the remainder of this ensemble.

0 Repeat the analysis for the other light quark &y 4.

O Include multi-particle operators to isolate and exclude any
multi-particle states.
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