Glueball Spectral Densities from the Lattice

Orlando Oliveira (<u>orlando@teor.fis.uc.pt</u>) University of Coimbra, Portugal

D. Dudal (U. Ghent); Paulo J. Silva (U. Coimbra)

Lattice 2012, Cairns, Australia

Motivation

ø better understanding of the pure YM dynamics

o understand the physical spectrum

The Kallen-Lehmann Representation

 $\mathcal{O}(p)$ euclidean momentum space operator

 $\langle \mathcal{O}(p)\mathcal{O}(-p)\rangle = \int d\mu \frac{\rho(\mu)}{p^2 + \mu}$

quantum associated with O(p)contributes to the S-matrix $\rho(\mu)$ is real and positive defined

spectral density

 $ho(\mu) = \delta(\mu - m^2)$ free field theory $ho(\mu) = Z\delta(\mu - m^2) + \sigma(\mu)$

mass excitations, physical degrees of freedom

Landau Gauge Gluon Propagator

 $D^{ab}_{\mu\nu}(p) = \delta^{ab} \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) D(p^2)$

 $D(t) = \int dp_0 \ e^{-ip_0 t} D(p_0, \vec{p} = 0) = \int_0^{+\infty} d\mu^2 \ \rho(\mu^2) \ e^{-t\mu^2}$

if the gluon is physical state $\rho(\mu), D(t) > 0$

see also D. Dudal, O. Oliveira, N. Vandersickel, Phys Rev **D81**, 074505 (2010); D. Dudal, M. S. Guimarães, S. P. Sorella, Phys Rev Lett **106**, 062003 (2011)

Glueballs - pure Yang-Mills

Lattice calculations: $0^{++}, 2^{++}, 0^{-+}, ...$

1710(130) MeV 0^{++} 2390(150) MeV 2^{++} 2560(155) MeV 0^{-+} 2670(310) MeV 0^{++} 3004(190) MeV 2^{-+}

C. J. Morningstar, M. J. Peardon, Phys Rev D60, 034509 (1999)
B. Lucini, M. Teper, JHEP 6, 050 (2001)
Y. Chen et al., Phys Rev D73, 014516 (2006)

Glueballs - pure Yang-Mills

Lattice calculations: $0^{++}, 2^{++}, 0^{-+}, ...$

1710(130) MeV 0^{++} 2390(150) MeV 2^{++} 2560(155) MeV 0^{-+} 2670(310) MeV 0^{++} 3004(190) MeV 2^{-+}

C. J. Morningstar, M. J. Peardon, Phys Rev D60, 034509 (1999)
B. Lucini, M. Teper, JHEP 6, 050 (2001)
Y. Chen et al., Phys Rev D73, 014516 (2006)

Glueballs - pure Yang-Mills

C. J. Morningstar, M. J. Peardon, Phys Rev D60, 034509 (1999)
B. Lucini, M. Teper, JHEP 6, 050 (2001)
Y. Chen et al., Phys Rev D73, 014516 (2006)

0⁺⁺ Scalar Glueball

$$\mathcal{O} = F_{\mu\nu}F_{\mu\nu} \qquad \langle \mathcal{O}(p) \mathcal{O}(-p) \rangle = \int_0^{+\infty} d\mu \, \frac{\rho(\mu)}{p^2 + \mu}$$

infinities polynomial in $p^2 + \langle \mathcal{O}(p)\mathcal{O}(-p) \rangle_{\text{finite}}$

 $a_0 + a_1 \left(p^2 - T \right) + a_2 \left(p^2 - T \right)^2$ $(p^2 - T)^3 \int_0^{+\infty} d\mu \ \frac{\rho(\mu)}{p^2 + \mu} \ \frac{1}{(T + \mu)^3}$

The glueball operator

 $= 12 - g^2 a^4 F^2 + \mathcal{O}(a^6)$

For the simulation we consider the Wilson action

 $S_{\text{Wilson}} \longrightarrow S + \mathcal{O}(a^2)$

$$D(p^{2}) = -(p^{2} - T)^{3} \int_{0}^{+\infty} d\mu \frac{\rho(\mu)}{p^{2} + \mu} \frac{1}{(\mu + T)^{3}}$$

$$D(p^{2}) = -(p^{2} - T)^{3} \int_{0}^{+\infty} d\mu \frac{\rho(\mu)}{p^{2} + \mu} \frac{1}{(\mu + T)^{3}}$$

$$-\frac{D(p^2)}{(p^2 - T)^3} = \int_0^{+\infty} d\mu \frac{\hat{\rho}(\mu)}{p^2 + \mu}$$

 $\hat{\rho}(\mu) = \frac{\rho(\mu)}{(\mu + T)^3}$

$$D(p^{2}) = -(p^{2} - T)^{3} \int_{0}^{+\infty} d\mu \frac{\rho(\mu)}{p^{2} + \mu} \frac{1}{(\mu + T)^{2}}$$

$$\frac{D(p^2)}{(p^2 - T)^3} = \int_0^{+\infty} d\mu$$

 $d\mu \frac{\hat{\rho}(\mu)}{p^2 + \mu}$

 $\frac{\rho(\mu)}{(\mu+T)^3}$ $\hat{
ho}(\mu)$

3

Double Laplace transform of

$$D(p^{2}) = -(p^{2} - T)^{3} \int_{0}^{+\infty} d\mu \frac{\rho(\mu)}{p^{2} + \mu} \frac{1}{(\mu + T)^{2}}$$

 $\frac{\hat{\rho}(\mu)}{p^2 + \mu}$

$$\frac{D(p^2)}{(p^2 - T)^3} = \int_0^{+\infty} d\mu$$

 $\hat{\rho}(\mu) = \frac{\rho(\mu)}{(\mu + T)^3}$

Double Laplace transform of

 $^{2}\hat{
ho}$

$$\mathcal{D} = \mathcal{L}$$

1
noisy data

Need to solve a regularized linear system Tikhonov-Morozov Regularization

 $|Ax = B \qquad \qquad ||B - B^{\delta}|| < \delta$

minimize $||Ax - B|| + \lambda ||x||^2$

solve normal equation

 $A^*Ax^{\lambda} + \lambda x^{\lambda} = A^*B$ $||Ax^{\lambda} - B|| = \delta$

 $\lambda > 0$

 $\mathcal{L}^4 \hat{
ho} + \lambda \hat{
ho} = \mathcal{L}^2 \mathcal{D}$

$\int_0^{+\infty} dt \,\hat{\rho}(t) \,\frac{\ln \frac{z}{t}}{z-t} + \lambda \,\hat{\rho}(z) = \int_0^{+\infty} dt \frac{\mathcal{G}(t)}{t+z}$

integrals regularized via a cutoff $\Lambda = 11~{
m GeV}$ and discretized via a half-open Newton-Cotes

Results and Conclusions

preliminary results for the scalar glueball spectral density

numerics needs to be better investigated

spectral density shows good agreement with previous lattice spectrum calculations

increase the statistics