Stringy Excitation and Role of UV Gluons in Lattice QCD

H. Ueda (Kyoto U.), in collaboration with T. Doi, S. Fujibayashi, S. Tsutsui, T. Iritani, H. Suganuma (Kyoto U.)

Abstract : Using SU(3) quenched lattice QCD, we study ground-state (GS) and low-lying even-parity excited-state (ES) potentials of quark-antiquark systems in terms of the gluon momentum component in the Coulomb gauge. By introducing UV cut in the gluon-momentum space, we investigate the sensitivity of the GS and ES potentials, and the stringy excitation to the UV gluons quantitatively.

Lattice 2012 June 25-29, 2012, Cairns

Introduction

One-dimensional squeezing of color electric field

Unlike QED, QCD forms Color-Flux-Tube between quarks, and this One-dimensional Squeezing of color-electric field leads to Linear Confinement potential in the infrared region.

Flux tube formation for QQbar and 3Q systems in Lattice QCD

G. S. Bali

Non-perturbative

H. Ichie et al., Nucl. Phys. A721, 899 (2003)

Actually, apart from the color-Coulomb energy around quarks, Flux-Tube Formation has been observed in Lattice QCD both for QQbar and 3Q systems

Gluonic Excitation and Hybrid Hadrons

This Stringy Mode is non-quark-origin excitation, and therefore it can be regarded as Gluonic Excitation. Such a gluonic-excited state may be interpreted as Hybrid Hadrons ($q\bar{q}G$ and qqqG), which are interesting hadrons beyond the Quark-Model framework. In Lattice QCD, Gluonic Excitation has been studied using Excited-State Potentials in spatially-fixed QQbar systems.

Excited-state potential in Lattice QCD

Gluonic Excitation in QQ System

In Lattice QCD, Excited-State Potentials have been calculated, and their behavior is almost consistent with string excitation in infrared region, in spite of significant difference at small distance.

In the previous work, IR/UV-Gluon Contribution to the Ground -State Potential or Confinement has been studied.

A. Yamamoto and H.Suganuma, PRL 101, 241601 (2008); PRD79, 054504 (2009).

The string tension is almost unchanged even after cutting off the high-momentum gluon component above 1.5GeV.

In this talk, we study not only ground-state potential but also low-lying even-parity Excited-State Potentials of QQbar systems in terms of Gluon Momentum Component in Coulomb gauge.

By introducing UV-cut in 3dim Gluon-Momentum space, we study the UV-gluon contribution to Excited-State Potentials and Stringy Excitations.

Formalism to extract Excited-State Potentials in lattice QCD

T.T.Takahashi and H.Suganuma, PRL 90 (2003), PRD70 (2004).

We present the formalism to extract the excited-state potential for the spatially-fixed Q-Qbar system.

We denote the n-th eigen-state of the QCD Hamiltonian by $|n\rangle$,

$$H|n\rangle = V_n|n\rangle \quad (n = 0, 1, 2, \dots)$$

Here, Vn denotes n-th Excited-State Potential, and Oth eigen-state means the ground-state.

Consider arbitrary independent Q-Qbar states $|\phi_k\rangle$ (k=0,1,2...). Generally, each Q-Qbar state $|\phi_k\rangle$ can be expressed by a linear combination of the Q-Qbar physical eigen-states:

$$\left|\phi_{k}\right\rangle = c_{0}^{k}\left|0\right\rangle + c_{1}^{k}\left|1\right\rangle + c_{2}^{k}\left|2\right\rangle + \dots$$

Formalism to extract excited-state potentials in lattice QCD

The Euclidean-time evolution of the QQbar state $|\phi_k(t)\rangle$ is expressed with the operator e^{-Ht} , which corresponds to the Transfer Matrix in Lattice QCD. The overlap $\langle \phi_j(T) | \phi_k(0) \rangle$ is given by the Wilson loop $W_T{}^{jk}$, sandwiched by initial state ϕ_k at t=0 and final state ϕ_j at t=T, and is expressed in the Euclidean Heisenberg picture as

$$W_T^{jk} \equiv \left\langle \phi_j(T) \middle| \phi_k(0) \right\rangle = \left\langle \phi_j \middle| W(T) \middle| \phi_k \right\rangle = \left\langle \phi_j \middle| e^{-HT} \middle| \phi_k \right\rangle$$
$$= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \overline{c}_m^j c_n^k \left\langle m \middle| e^{-HT} \middle| n \right\rangle = \sum_{n=0}^{\infty} \overline{c}_n^j e^{-V_n T} c_n^k$$

This is a basic relation between Wilson loops and potentials.

By introducing the matrix $C^{nk} = c_n^k \qquad \Lambda_T^{mn} = e^{-V_n T} \delta^{mn}$ this relation can be rewritten as $W_T = C^{\dagger} \Lambda_T C$ Formalism to extract excited-state potentials in lattice QCD

$$W_T = \vec{C} \wedge_T C \qquad \Lambda_T = \operatorname{diag}(e^{-V_0 T}, e^{-V_1 T}, e^{-V_2 T}, \dots)$$

Using this relation, we extract the potentials V_n (n=0,1,2...) from the Wilson loop W_T . Consider the following combination:

$$W_T^{-1}W_{T+1} = \{C^{\dagger} \Lambda_T C\}^{-1} C^{\dagger} \Lambda_{T+1} C = C^{-1} \operatorname{diag}(e^{-V_0}, e^{-V_1}, e^{-V_2}, \dots)C\}$$

Then, e^{-V_n} can be obtained as eigen-values of matrix $W_T^{-1}W_{T+1}$. In fact, they are the solutions of the secular equation,

$$\det\left\{W_T^{-1}W_{T+1} - t1\right\} = \prod_n (e^{-V_n} - t) = 0$$

In this way, the potentials V_n (n=0,1,2,...) can be obtained from the Wilson loop matrix, $W_T^{-1}W_{T+1}$.

Formalism to extract excited-state potentials in lattice QCD

In the practical calculation, we prepare gauge-invariant QQbar states $|\phi_k\rangle$ composed by fat-links obtained with smearing method, and calculate many Wilson loops sandwiched by various combination of initial state $|\phi_k\rangle$ and final state $|\phi_j\rangle$.

By solving the secular equation within a truncated dimension, ground-state and excited-state potentials can be obtained.

Fourier Transformation and Gluon Momentum Space

A. Yamamoto and H.Suganuma, PRL 101, 241601 (2008); PRD79, 054504 (2009).

Next, we consider 3-dim Fourier Transformation of link-variable U_{μ} (s), and introduce UV-cut in 3-dim Momentum Space.

Step 1. Generation of link-variable in Coulomb gauge

Coordinate-space link-variable

$$U_{\mu}(x) = e^{iaA_{\mu}(x)} \in SU(3)$$

We consider link-variables fixed in Coulomb gauge, because spatial gauge-field fluctuation is strongly suppressed.

Step 2. Discrete Fourier transformation

By 3-dim discrete Fourier transformation, we define momentum-space link-variable.

momentum-space link-variable

$$\widetilde{U}_{\mu}(p) \equiv \frac{1}{L^3} \sum_{\vec{x}} U_{\mu}(x) \exp(i\vec{p} \cdot \vec{x})$$

Step 3. "UV-cut" in the momentum space

We introduce "UV-cut" in the momentum space. Outside the cut, $\tilde{U}_{\mu}(p)$ is replaced by 0 (free-field link-variable).

momentum-space link-variable with UV cut

$$\widetilde{U}^{\Lambda}_{\mu}(p) \equiv \begin{cases} \widetilde{U}_{\mu}(p) \\ 0 \end{cases}$$

(outside UV-cut)

free-field link variable $A_{\mu}^{\text{free}}(x) = 0$ $U_{\mu}^{\text{free}}(x) = e^{i0} = 1$ $\tilde{U}_{\mu}^{\text{free}}(p) = \delta_{p0}$

Step 4. Inverse Fourier transformation

By the inverse Fourier transformation, $U'_{\mu}(x) \equiv \sum_{\vec{p}} \widetilde{U}^{\Lambda}_{\mu}(p) \exp(-i\vec{p} \cdot \vec{x})$ and SU(3) projection by maximizing $\operatorname{Re}Tr[U_{\mu}^{\Lambda}(x)^{\dagger}U_{\mu}'(x)]$ we obtain Coordinate-Space Link-variable with UV-cut. $U_{\mu}^{\Lambda}(x) \in SU(3)$

Step 5. Calculation of Wilson Loops

Using the "UV-cut" link-variable $U^{\Lambda}_{\mu}(x)$ instead of $U_{\mu}(x)$, we calculate many Wilson loops W_{T}^{jk} sandwiched by various combination of initial state $|\phi_{k}\rangle$ and final state $|\phi_{j}\rangle$

The calculation condition of Lattice QCD

- SU(3) quenched calculation
- $\beta = \frac{2N_C}{g^2} = 6.0$
- Lattice size : 16⁴
- 100 gauge configurations

Here, we only consider parity-even excited-state potentials.

We prepare $|\phi_k\rangle$ (k=0,1,2,3) composed by fat-links obtained by smearing method with smearing parameter α =2.3, iteration = 0, 8, 16, 24.

 $\beta = 6.0$ $L^{4} = 16^{4}$ Coordinate space $a \simeq 0.104 \text{ fm}$ $V = (La)^{4} \approx (16.6 \text{ fm})^{4}$ Momentum space momentum lattice spacing $a_{p} \equiv \frac{2\pi}{La} \approx 0.74 \text{ GeV}$ $\frac{\pi}{a} \approx 6 \text{ GeV}$ Coulomb gauge

Coulomb gauge 3D Fourier transformation Ground-state/Excited-state Potentials and Gluonic Excitation in Q-Qbar Systems

No cut (original) data

Ground-state/Excited-state Potentials and Gluonic Excitation in Q-Qbar Systems

UV-cut: 2.2GeV

The short-distance Coulomb part (1/r) is reduced in Ground-state potential. The shape of Excited-state potentials is changed. Ground-state/Excited-state Potentials and Gluonic Excitation in Q-Qbar Systems

UV-cut: 1.5GeV

Ground-state and Excited-state Potentials in Lattice QCD

By the Cut of UV-gluons,

the IR part of Ground-State Potential is almost unchanged, and the change of Excited-State Potential is more significant.

Effect of the UV-gluon removal from Ground-state and Excited-state Potentials

The black symbols denote the UV-cut data. By the Cut of UV-gluons, the IR part of Ground-State Potential is almost unchanged, and the change of Excited-state potential is more significant.

SU(3) Lattice QCD result for Gluonic Excitation Energy defined by V_n - V_0

Roughly speaking, even after the removal of UV-gluons, the magnitude of Gluonic Excitation is approximately unchanged. The Gluonic Excitation remains to be 1GeV order.

Summary and Concluding Remarks

- Using SU(3) quenched lattice QCD, we have studied Groundstate and low-lying even-parity Excited-state potentials of quark-antiquark systems in terms of the Gluon Momentum Component in Coulomb gauge.
- By introducing UV-Cut in the Gluon Momentum Space, we study the sensitivity of the potentials and the Stringy Excitation to the UV-gluons.
- Even after cutting off high-momentum gluon component above1.5 GeV, the IR part of Ground-State Potential are almost unchanged.
- The change of Excited-State Potential is more significant.
- Roughly, even after the removal of UV-gluons, the magnitude of the Gluonic Excitation is approximately unchanged, and remains to be 1GeV order.

Lattice-QCD Brilliouin zone and Relevant Region for confinement

Ground-state and Excited-state Potentials in Lattice QCD

Ground-state and Excited-state Potentials in Lattice QCD

Gluonic Excitation in Q-Qbar Systems in SU(3) Lattice QCD

Gluonic Excitation in Q-Qbar Systems in SU(3) Lattice QCD

Lattice QCD result of IR cut for Quark-antiquark potential

 $a \simeq 0.10 \, \mathrm{fm}$ $a_p \simeq 0.77 \, \mathrm{GeV}$

By the IR cutoff, the Coulomb potential seems to be unchanged, but the confinement potential is largely reduced.

Lattice QCD result of UV cut for Quark-antiquark potential

 $a\simeq 0.10~{
m fm}$ $a_p\simeq 0.77~{
m GeV}$

By the UV cutoff, the Coulomb potential is largely reduced, but the confinement potential is almost unchanged.

Coulomb potential (UV) — disappears confinement potential (IR) — unchanged

Quark Confining Force (String Tension) with UV cut

As a remarkable fact, the string tension is almost unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. When the UV cutoff is smaller than 1.5 GeV, the string tension is reduced.

Only Low-Momentum Component of Gluons below 1.5GeV is relevant for Confinement.

Procedure to select Gluonic momentum-components in Lattice QCD

We mainly consider UV cut or IR cut in 3D momentum space.

ultraviolet (UV) cut

$$\sqrt{p^2} > \Lambda_{\rm UV}$$

infrared (IR) cut

$$\sqrt{p^2} < \Lambda_{\rm IR}$$

Summary of procedure to select gluonic momentum-components in lattice QCD

