Strangeness of the nucleon with Nf = 2 + 1 + 1 twisted mass fermions

V. Drach NIC, DESY Zeuthen

in collaboration with C. Alexandrou, S. Dinter, K. Jansen, G. Koutsou, A. Vaquero ETM Collaboration

Lattice 2012, Cairns, Australia, June 25th, 2012 Introduction

Conclusion

Introduction

Lattice techniques

Excited state contamination

Conclusion

Introduction

Motivations

- Experimental direct detection of dark matter put bounds on the WIMP-Nucleon cross section
- Results are interpreted using various models (including SUSY) : systematic uncertainty due to (N(p)|q
 q|N(p))

 \longrightarrow non-perturbative computation is required

see Plenary talk [R. Young]

- sigma terms : $\sigma_{\pi N} \equiv m_l \langle N(p) | \bar{u}u + \bar{d}d | N(p) \rangle$ and $\sigma_{KN} = m_s \langle N(p) | \bar{s}s | N(p) \rangle$
- dimensionless ratio : $y_N \equiv \frac{2\langle N(p)|\bar{s}s|N(p)\rangle}{\langle N(p)|\bar{u}u+dd|N(p)\rangle}$
- Twisted mass fermions offer two main advantages :
 - efficient noise reduction technique
 - multiplicative renormalization

see [arXiv:1202.1480] for details

• In this talk : discussion of one systematic effects :

excited states contamination

Lattice setup

$N_f = 2 + 1 + 1$ dynamical simulations

- $N_f = 2 + 1 + 1$ configurations generated by ETMC
- lattice spacing a = 0.078 fm
- $32^3 \times 64$ lattice : L = 2.5 fm, $m_{PS}L > 3.5$
- fixed pion mass \approx 380 MeV

Mixed action setup

- Mixed action setup : introduce a doublet of degenerate twisted mass fermions (χ_q, μ_q)
- aµs and aµc can be tuned to reproduce the K, D meson masses in the unitary setup
- Noise reduction techniques based on an exact property of the valence action see also talks [F. Zimmermann] and [A. Vaquero]

Twisted mass fermions and disconnected diagrams

- Twisted mass Wilson Dirac operator : $D_{\pm}[U] = D_{\rm W}[U] + am_0 \pm ia\mu_q\gamma_5$
- Noise reduction technique specific for twisted mass fermions :
 - Exact relation : [C. Michael, C. Urbach, 2007]

$$\frac{1}{D_{-}} - \frac{1}{D_{+}} = 2ia\mu_{q}\frac{1}{D_{-}}\gamma_{5}\frac{1}{D_{+}}$$

- r.h.s can be evaluated stochastically using "one-end-trick"
- Useful for correlators containing the insertion of the operator $\overline{\chi}(x)\Gamma\tau^{3}\chi(x)$ (twisted basis)

Introduction

Conclusion

Correlators

• two-point function : (J : smeared nucleon interpolating field)

$$C_{\rm 2pts}(t) = \sum_{\vec{x}} \langle J(t, \vec{x}) J^{\dagger}(0) \rangle \propto e^{-M_X t} + \mathcal{O}(e^{-\Delta M_X t}), \qquad \Delta M_X = M_{X^*} - M_X$$

• Ratio :

$$R(t, t_{s}) = \frac{\sum_{\vec{x}, \vec{y}} \langle J(t_{s}, \vec{x}) O(t, \vec{y}) J^{\dagger}(0) \rangle}{C_{2\text{pts}}^{\chi}(t_{s})} = \langle X | O(0) | X \rangle + \mathcal{O}(e^{-\Delta M_{\chi}(t-t_{s})}) + \mathcal{O}(e^{-\Delta M_{\chi}t_{s}})$$

• Plateau summation method :

$$P(t_s) = \sum_{t=0}^{t_s} R(t, t_s) = \sum_{t=0}^{t_s} \frac{\sum_{\vec{x}, \vec{y}} \langle J(t_s, \vec{x}) O(t, \vec{y}) J^{\dagger}(0) \rangle}{C_{2\text{pts}}^{\chi}(t_s)} = A + \langle X | O(0) | X \rangle t_s + \mathcal{O}(e^{-\Delta M_{\chi} t_s})$$

Results

- $R(t, t_s = 12a)$ (bare) in the light (connected, disconnected and sum) and strange sector
- source-sink separation fixed to \sim 1 fm
- \sim 800 configurations used

Excited states contamination

- Accurate estimation for a source-sink separation of about 1 fm BUT we need to take the limit $t, t_s \rightarrow \infty$
- Problem : the noise increases exponentially when t or t_s increases :

 High statistic is needed to check for a contamination of the results by
 excited states

Light sector

• small stat. $t_s/a = 12 \langle N|\overline{ss}|N \rangle = 0.41(4) \longrightarrow f_{\overline{I}_s} = \frac{m_s \langle N|\overline{ss}|N \rangle}{m_N} \approx 0.13(2)$

• large stat. $t_s/a = 18 \langle N|\bar{s}s|N \rangle = 0.68(9)$

Summed plateau

• small stat. [10, 20] : $\langle N | \bar{s}s | N \rangle = 0.60(27)$

• large stat. [14, 20] : $\langle N | \bar{s}s | N \rangle = 1.00(31)$

Comparison

Strangeness of the nucleon

 \longrightarrow cancelation of the excited the excited states contribution

Conclusion

Twisted mass fermions

- Efficient noise reduction techniques (no eigenmode preconditionning)
- Multiplicative renormalization both in the unitary (light) and mixed action (strange) setup

Excited states contamination

- Large dependence in the source-sink separation indicates excited states contamination
- Is t_s ~ 1.5 fm enough for the σ-terms ?
- y_N parameter can be extracted safely with $t_s \sim 1$ fm

Future plans

- Larger statistic to increase even more the source-sink separtion
 - Investigation at smaller a :

 — confirm that there is no large unitary breaking
- light quark mass dependence