

Sigma commutators from an SU(3) chiral extrapolation

Phiala Shanahan

Supervisors: Prof. Anthony Thomas & Dr. Ross Young

June 25, 2012

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline

2 Method

<ロ> (日) (日) (日) (日) (日)

History

- Idea of symmetries and broken symmetries important in physics since the 50s
- Understand hadron structure within QCD in terms of symmetries
- Want to understand / quantify small violations of fundamental symmetries
- Would like to measure matrix elements of symmetry breaking density

History continued...

We consider

- Sigma terms
 - Matrix element of even number of charge commutators of the Hamiltonian
 - Modern definition: usually two commutators

• e.g.,
$$\sigma_N = \frac{1}{3} \langle N | [{}^5 \mathcal{Q}_i, [{}^5 \mathcal{Q}_i, H]] | N \rangle$$

- Double commutator: picks out symmetry breaking part of H
 - For QCD, that is $m\overline{\psi}\psi$
 - Operator identity: $[{}^{5}\mathcal{Q}_{i}, [{}^{5}\mathcal{Q}_{j}, H]] = \delta_{ij} \int d\vec{r} m \overline{\psi}(\vec{r}) \psi(\vec{r})$

• So
$$\sigma_N = \overline{m} \langle N | \overline{u}u + \overline{d}d | N \rangle$$

Definitions

For a baryon B, the sigma terms are scalar form-factors evaluated in the limit of vanishing momentum transfer. For each quark flavor q,

$$\sigma_{Bq} := m_q \langle B | \overline{q} q | B \rangle \tag{1}$$

$$\overline{\sigma}_{Bq} := \sigma_{Bq} / M_B \tag{2}$$

For the nucleon, define (traditional)

$$\sigma_{\pi N} := m_l \langle N | \overline{u}u + \overline{d}d | N \rangle$$

$$\sigma_s := m_s \langle N | \overline{s}s | N \rangle$$
(3)
(4)

Motivation - why study σ terms?

To understand

- Nature of explicit chiral symmetry breaking in QCD
- Decomposition of the mass of the nucleon
- Nucleon structure

Also important for

- Interpretation of experimental searches for dark matter
 - e.g., neutralino
 - Interactions with hadronic matter determined by couplings to σ_I , σ_s
 - See recent papers^{1,2}

Particularly topical: Dark Matter

¹S. J. Underwood et al., [arXiv:1203.1092 [hep-ph]]

²R. J. Hill and M. P. Solon, Phys. Lett. **B707**, 539 (2012)

Traditional evaluation

 $\sigma_{\pi{\sf N}}$

- Experimental: $\sigma_{\pi N}$ determined from πN scattering data not well known
- $\sigma_{\pi N} \sim$ 45-70 MeV
- Controversial, limited precision (but better than σ_s)

 σ_{s}

- Indirect: σ_s evaluated using $\sigma_{\pi N}$ and $\sigma_0 = m_l \langle N | \overline{u}u + \overline{d}d 2\overline{s}s | N \rangle$
- $\sigma_s \sim 300 \; {\rm MeV}$
 - up to $\frac{1}{3}M_N$ from non-valence quarks
 - incompatible with constituent quark models
- Determination has limited precision
- σ_s has uncertainty \sim 90 MeV, even with perfect $\sigma_{\pi N}$

$\sigma_{\rm s}$ difficult to pin down experimentally

(日) (周) (三) (三)

Lattice QCD results

Need to reduce uncertainty on σ_s - lattice QCD

Many calculations in recent years, give $\sigma_{\rm s}$ from the lattice

- Global: 20-50 MeV
- This work: 21 ± 6 MeV (See later)

Common methods:

- Direct calculation
- Peynman-Hellman Theorem (e.g., this work)

Feynman-Hellman Relation

$$\sigma_{Bq} = m_q \frac{\partial M_B}{\partial m_q}$$

Gell-Mann-Oakes-Renner:

$$m_l \to m_\pi^2/2$$
 (5)
 $m_s \to m_K^2 - m_\pi^2/2$ (6)

Lattice QCD:

- Baryon masses evaluated at different (m_{π}, m_{K})
- Most simulations not yet at physical point

Our method

- Have: PACS-CS¹ lattice data for octet baryon masses at different (m_{π}, m_{K}) values
- Fit: Chiral perturbation theory baryon mass function to data
 - Extrapolate to physical point
 - Fit constrains slope at physical point
 - Correlated error analysis
- **Differentiate:** Use Feynman-Hellman relation to evaluate sigma terms

¹S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D79, 034503 (2009)

Chiral perturbation theory (χ PT) with finite-range regularisation (FRR)

Idea: Write baryon masses as a function of quark mass

But: Traditional low-oder polynomial fits not consistent with symmetries of QCD

- $\bullet\,$ Chiral symmetry broken $\to\,$ pion as Goldstone boson with small mass
- Goldstone boson loops contribute to hadron properties
- $\bullet\,$ Give terms $\propto\,$ odd powers or logs of pion mass
- GMOR: $m_\pi^2 \propto m_q$
- Therefore need non-analytic functions of quark mass

Solution: Chiral perturbation theory (χ PT)

Chiral perturbation theory (χ PT)

An effective field theory for QCD

- Goldstone bosons (pions) become the fundamental degrees of freedom
- Built on the symmetries of QCD
- Naturally generates observed non-analyticity
- i.e., Preserves correct chiral behavior of QCD

Formulae

- \bullet Obtain effective Lagrangian at leading order in $\chi {\rm PT}$
- Power series expansion in powers of derivatives and (chiral-symmetry breaking) quark mass matrix
- Chiral loops account for non-analytic behavior

Figure: One-loop graphs at order $m_q^{(3/2)}$

B

B

В

B'

B

Finite-range regularisation (FRR)

- Need to regularize infinities arising from loop diagram integrals
- QCD: Goldstone bosons emitted/absorbed by composite objects made from quarks, gluons
 - Form factors suppress these processes for momenta greater than R^{-1}
- FRR: Introduce finite ultra-violet cutoff into loop integrals
- Physical results independent of shape of regulator

Summary:

- Physically motivated way to regularize infinities
- Shown to be effective over a large range of quark masses

Our method - Reminder

- Have: PACS-CS lattice data for octet baryon masses at different (m_{π}, m_{K}) values
- Fit: Chiral perturbation theory baryon mass function to data
 - Extrapolate to physical point
 - Fit constrains slope at physical point
 - Correlated error analysis
- **Differentiate:** Use Feynman-Hellman relation to evaluate sigma terms

¹S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D79, 034503 (2009)

Fit to PACS-CS lattice data

Comparison with physical values

В	Mass (GeV)	Experimental
Ν	0.959(24)(9)	0.939
Λ	1.129(15)(6)	1.116
Σ	1.188(11)(6)	1.193
Ξ	1.325(6)(2)	1.318

Phiala Shanahan (Adelaide Uni)

June 25, 2012 17 / 27

3

- ∢ ≣ →

Image: A match a ma

* Physical point

June 25, 2012 19 / 27

- PACS-CS lattice data
- Physical point
 - UKQCD-QCDSF 24³ lattice
 - UKQCD-QCDSF 32³ lattice

June 25, 2012 21 / 27

This is NOT a fit to the data shown...

W. Bietenholz et al. [QCDFS-UKQCD Collaboration], [arXiv:1102.5300[hep-lat]] 🚊 🔊 🧠

Sigma Commutators

Results

For the nucleon, dimensionful results

$$\sigma_{\pi N}=$$
 45 \pm 6 MeV $\sigma_s=$ 21 \pm 6 MeV

Phiala Shanahan (Adelaide Uni)

I ≡ ►

Comparison with direct results from lattice QCD

- Our method = easy to evaluate σ_{Bq} at any (m_π, m_K)
- QCDSF Collaboration¹: precise direct calculations of $\sigma_{\pi N}$ and σ_s from lattice QCD
 - at $(m_{\pi}, m_{K}) = (281, 547)$ MeV
 - $\sigma_{\pi N}^{\text{QCDSF}} = 106(11)(3) \text{ MeV}$
 - $\sigma_s^{
 m QCDSF} = 12^{+23}_{-16} \text{ MeV}$
- We find
 - at $(m_{\pi}, m_{K}) = (281, 547)$ MeV
 - $\sigma_{\pi N} = 131(11)(5) \text{ MeV}$
 - σ_s = 16(5)(1) MeV
- Another consistent check!

¹G. S. Bali et al. [QCDSF Collaboration], Phys. Rev. D85, 054502 (2012)

Conclusion

• Success: Precise determination of σ_s and $\sigma_{\pi N}$ from lattice QCD

$$\sigma_{s}=21\pm 6\,\,{
m MeV}$$
 $\sigma_{\pi N}=45\pm 6\,\,{
m MeV}$

► < ∃ ►</p>

Backup - Check not leaving PCR

June 25, 2012 26 / 27

Backup - Sigma terms as input to dark matter cross-sections

Note: Write sigma commutator as $M_N f_{Tq} := \langle N | m_q \overline{q} q | N \rangle$

- e.g., Neutralino
 - Particle candidate for dark matter
 - Weakly interacting fermion
 - Mass $\sim 100~{
 m GeV}$ or more
 - Density: a few per Liter
- Neutralino-Hadron cross-section (spin-indep)

$$\sigma_{SI} = 4(N_N^2/\pi)f^2$$

$$\frac{f}{M_N} = \sum_{q=u,d,s} \frac{\alpha_{3q}f_{Tq}}{m_q} + \sum_{Q=c,b,t} \frac{\alpha_{3Q}f_{TQ}}{m_Q}$$

For details see: S. J. Underwood et al., [arXiv:1203.1092 [hep-ph]]