The Strangeness and Charmness of Nucleon and the Roper Mass From Chiral Fermions

Ming Gong

Collaborators : Ying Chen, Anyi Li, Andrei Alexandru, Terrence Draper, Keh-Fei Liu University of Kentucky χ QCD Collaboration

Lattice 2012 June 25, 2012

イロト 不同 トイヨト イヨト

 χQCD

1 The Strangeness and Charmness of Nucleon

- Algorithms
- Numerical results

2 The Roper Mass

Recent results on the strangeness

 χ QCD

イロン 不得 とくほと くほとう

Valence overlap fermions on 2+1 flavor domain wall fermion configurations

- Chiral symmetry
- Small $O(a^2)$ and $O(m^2a^2)$ errors
- Small Δ_{mix}
- Deflation and HYP smearing algorithm
- Multi-mass algorithm
 - Speed up 79 times for $32^3\times 64$ lattices
 - Speed up 51 times for $24^3 \times 64$ lattices ^a

^aA. Li et al., Phys.Rev.D82:114501,2010

 χQCD

イロト イボト イヨト イヨト

Improvements for nucleon correlation functions

Improving the signal of nucleon 2-pt functions

- **Double sources** Sources on t = 0 and t = 32 simultaneously
- Z_3 grid source A grid of point sources with Z_3 noise phases
- Low-mode substitution Low modes part is treated exactly

イロト 不得 トイヨト イヨト

 χQCD

• Smearing – optimized interpolation field

Improvements for nucleon correlation functions

Improving the signal of nucleon 2-pt functions

- **Double sources** Sources on t = 0 and t = 32 simultaneously
- Z_3 grid source A grid of point sources with Z_3 noise phases
- Low-mode substitution Low modes part is treated exactly

< ロ > < 同 > < 回 > < 回 >

 χQCD

• Smearing - optimized interpolation field

Improvements for nucleon correlation functions

Improving the signal of nucleon 2-pt functions

- **Double sources** Sources on t = 0 and t = 32 simultaneously
- Z_3 grid source A grid of point sources with Z_3 noise phases
- Low-mode substitution Low modes part is treated exactly
- Smearing optimized interpolation field

Improvements for loops

Improving the signal of loops

- Z₄ noise source
- \bullet Grid and dilution technique The sources are diluted to even-odd grid with cell (4,4,4,2)

 χQCD

• Low-mode average - Low modes part is treated exactly

Improvements for loops

Improving the signal of loops

- Z₄ noise source
- \bullet Grid and dilution technique The sources are diluted to even-odd grid with cell (4,4,4,2)
- Low-mode average Low modes part is treated exactly

The plateau of disconnected 3-pt functions

$$R(t', t, t_0) = \frac{\langle N(t)\bar{s}s(t')\bar{N}(t_0) \rangle - \langle N(t)\bar{N}(t_0) \rangle \langle \bar{s}s(t') \rangle}{\langle N(\bar{s}s|N\rangle = \lim_{\substack{t'-t_0 \to \infty \\ t-t' \to \infty}} R(t', t, t_0)}$$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ・ うへの

 χQCD

Ming Gong

The plateau of disconnected 3-pt functions

Ming Gong

The slope technique for disconnected 3-pt functions

$$R'(t, t_0) = \sum_{t'=t_0+1}^{t-1} R(t', t, t_0)$$

We can do the fitting :

$$R'(t, t_0) \mid_{t \to \infty} = const. + t \langle N | \bar{s}s | N \rangle$$

 χQCD

The slope technique for disconnected 3-pt functions

$$R'(t, t_0) = \sum_{t'=t_0+1}^{t-1} R(t', t, t_0)$$

We can do the fitting :

$$\mathsf{R}'(t,t_0)\mid_{t
ightarrow\infty}=\mathit{const.}+t\left< \mathsf{N}|\overline{\mathsf{s}}\mathsf{s}|\mathsf{N} \right>$$

・ロト ・回ト ・ヨト ・ヨト

 χQCD

The strangeness of nucleon

The fitting result

For $m_s = 0.063$, $m_{ud} = 0.016$ case : $f_{T_s} = 0.0205(44)$, $f_{T_s}{}^L = 0.0187(41)$, $f_{T_s}{}^H = 0.0017(15)$

Ming Gong

≣⊧ ≣ එ৭0 χ**QCD**

イロト 不得 トイヨト イヨト

The charmness of nucleon

The fitting result

For $m_c = 0.73$, $m_{ud} = 0.016$ case : $f_{T_c} = 0.056(18)$, $f_{T_c}{}^L = 0.029(6)$, $f_{T_c}{}^H = 0.024(17)$

Ming Gong

 χ QCD

イロト イボト イヨト イヨト

The Roper mass from quenched studies

 χQCD

Comparison for the improvements for proton

Lattice settings

Lattice size : $24^3\times 64$, $m_{ud}^{(sea)}=0.005,~m_s^{(sea)}=0.04$, $m_\pi\approx 305 {\rm MeV}$ 47 DWF configurations are used

Point source

 $m_{proton} = 1.13(14) \text{GeV}$

Smeared Grid with LMS	
$m_{proton} = 1.14(2) { m GeV}$	

Variation		
$m_{proton} = 1.12(1) { m GeV}$		
<日> <四> <回> <回>	æ	୬ୡଡ଼
		x QCD

Ming Gong

The Roper from wall source with coulomb gauge fix

Lattice settings

Lattice size :
$$24^3 \times 64$$
 , $m_{ud}^{(sea)} = 0.005$, $m_s^{(sea)} = 0.04$
51 DWF configurations are used

The chiral extrapolation a⁻¹=1.73GeV, ma=0.005 Nucleon (coulomb) Roper(coulomb) 2.6 2.4 exp 2.2 2 $= M_N(0) + c_1 m_{ps} (m_v, m_v)^2$ M_H(GeV) $M_N(m_v)$ 1.8 1 1.6 1.4 $+c_2 m_{ps}(m_v, m_s)^3$ 1.2 1 0.8 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 $m_{\pi}^{2}(GeV^{2})$

The Roper from other groups with dynamical fermions

 χ QCD

Conclusion

- The strangeness and charmness of nucleon are calculated.
 - The low-mode-substitution technique on proton and the low-mode-average technique on loop are very helpful.
 - From one ensemble, we get $f_{T_s} = 0.0205(44)$ and $f_{T_c} = 0.056(18)$.
 - The data on other ensembles are being calculated and the chiral and continuum extrapolation will be done.
- The Roper mass is calculated.
 - Our results are consistent with the experimental value and with the earlier quenched overlap study.
 - The wall source on coulomb gauge fixed configurations can suppress the p-wave scattering states very much.
 - $\bullet\,$ The scattering states is being carefully checked with the spectrum in $\rho\,$ meson channel.
 - The data on other ensembles are being calculated and the full chiral and continuum extrapolation will be done.

Thank you !

・ロト ・回 ト ・ヨト ・ヨト

≣ ∽۹(*χQCD*