#### Strange nucleon form factors on 2+1f anisotropic wilson clover lattices

#### Michael Cheng Boston University

#### Lattice 2012 Cairns, Queensland, Australia

## Collaborators

Update of work in progress to calculate disconnected strange nucleon form factors.

Aim to calculate scalar, axial, electric, and magnetic. Only show *preliminary results* for scalar.

"Continuation" of study of nucleon strangeness begun in **Phys.Rev. D85 (2012) 054510** 

Collaborators:

Ron Babich, Rich Brower, Mike Clark, Saul Cohen, George Fleming, Joel Giedt, James Osborne, Claudio Rebbi, David Schaich, Oliver Witzel

# Strange form factors

- Strange form factors  $\rightarrow$  understand the contribution of strange sea quarks to nucleon structure.
- Strange scalar form factor important in possible scattering of dark matter WIMPs via Higgs exchange.
- Cross section ~  $m_q \rightarrow$  sea quarks (strange, charm) may contribute because  $m_{ud}$  small.



Feynman-Hellman theorem:

$$\langle N|\bar{s}s|N
angle = rac{\partial m_N}{\partial m_s}$$

"Direct" method: Calculate three-point function with disconnected insertion explicitly.

- Need disconnected insertion
- Poor signal-to-noise ratio.

### Three point functions

 $G_{S}^{(3)}(t_{sink}, t', t_{src}) = (1 + \gamma_{4})^{\alpha\beta} \sum_{\vec{x}, \vec{x}'} \left\langle N^{\beta}(\vec{x}, t_{sink}) \left[ \overline{s}s(\vec{x}', t') - \left\langle \overline{s}s(\vec{x}', t') \right\rangle \right] \overline{N}^{\alpha}(x_{0}, t_{src}) \right\rangle$ 

- Signal depends on correlation between nucleon correlator and disconnected strange quark instertion
- Spectral decomposition:

$$G_{S}^{(3)}(t_{sink}, t', t_{src}) = \sum_{m,n} j_{mn} \exp(-m_{n}(t' - t_{src})) \exp(-m_{m}(t_{sink} - t'))$$

$$G^{(2)}(t_{sink}, t_{src}) = (1 + \gamma_{4})^{\alpha\beta} \sum_{\vec{x}} \left\langle N^{\beta}(\vec{x}, t_{sink}) \overline{N}^{\alpha}(x_{0}, t_{src} = 0) \right\rangle$$

$$= \sum_{n} c_{n} exp(-m_{n}(t_{sink} - t_{src}))$$

$$\langle N|\bar{s}s|N\rangle = G_{s} = \lim_{(t_{sink} - t_{src}) \to \infty} \frac{G_{s}^{(3)}(t_{sink}, t', t_{src})}{G_{s}^{(2)}(t_{sink}, t_{src})} = \frac{j_{11}}{c_{1}}$$

# Measuring the condensate

- Need estimate of trace of propagator on each time slice:  $\sum_{i} \langle \overline{s}s(x',t') \rangle = \sum_{i} \operatorname{Tr}_{cs} \left[ \overline{\psi}(x',t') D^{-1} \psi(x',t') \right]$
- Use  $U(1)^{x'}$  stochastic estimator to measure currents.
- Use dilution to estimate necessary propagator:
  - Diluted source is non-zero on only one site every  $4^3 \times 16$
  - Off-diagonal contribution fall off with meson mass.
- 12288 sources/configuration
- Ideal for using GPUs: JLab GPU cluster, Bungee GPU cluster at BU.

# Lattices

- Anisotropic Wilson clover lattices from Hadron Spectrum Collaboration (stout-smeared).
- 24<sup>3</sup>x128,  $\xi \approx 3.5$ ,  $a_s \approx 0.12$  fm.,  $a_t \approx 0.035$  fm.
- Two light quark masses  $a_t m_l = -0.0840$ , -0.0860 correspond to  $m_\pi \approx 220$ , 380 MeV.
- $a_t m_s = -0.0743$ ,  $a_t m_{crit} \approx -0.087$ ,  $m_K \sim 10\%$  heavy
- Measurements on 416 configurations at  $a_t m_l = -0.0840$ , 580 configurations at  $a_t m_l = -0.0860$

# **Two-point functions**

- Nucleon two-point functions
- 32 sources/configuration, every 4 time slices
- 3 source/3 sink smear
- 4, 16, 25 APE smearing steps with nearestneighbor weights = 1/7

$$G^{(2)}(t_{sink}) = (1+\gamma_4)^{\alpha\beta} \sum_{\vec{x}} \left\langle N^{\beta}(\vec{x}, t_{sink}) \overline{N}^{\alpha}(x_0, t_{src} = 0) \right\rangle$$
$$+ (1-\gamma_4)^{\alpha\beta} \sum_{\vec{x}} \left\langle N^{\beta}(\vec{x}, N_t - t_{sink}) \overline{N}^{\alpha}(x_0, t_{src} = 0) \right\rangle$$

### **Effective Masses**



- Two-point function is fairly well-determined.
- Smearing reduce contribution from excited states at the cost of poorer statistical error.
- Fit to double exponential:

$$G^{(2)}(t_{sink}, t_{src}) = c_1 \exp(m_N(t_{sink} - t_{src}) + c_2 \exp(m_{ex}(t_{sink} - t_{src}))$$

### Excited state fits



### Two point function results



- Double exponential fit gives robust values for  $m_N$ (and also  $c_1$ ) for  $a_t m_l = -0.0840$ :  $a_t m_N = 0.209(1)$
- Excited state contamination is greater at  $a_t m_l = -0.0860$ , 25 smearing steps gives unstable fits.
- $a_t m_N = 0.17(1)$

# Three point function



- Matrix element given by large time behavior of ratio.
- Excited state contamination is evident when insertion distance is small.

# Ratios



- Expect R(t\_{src}, t\_{sink}) to plateau for sufficiently large t\_{sink} t\_{src}
- Excited state contributions present, as in two-point function.
- Plateau not reached until  $t_{sink} t_{src} \sim 20$

### Ratios



- Different source/sink smearing gives consistent results.
- Slightly less excited state contribution at smaller time separations with more smearing.

### Fits



• Fit three-point function to some window  $t_{min} \le (t' - t_{src}) \le t_{max}$ 

- Excited states evidently give negative contribution to threepoint function.
- Cancellation of ground state terms at small separations difficult to get robust fit to excited contribution
- Fix m<sub>N</sub> to value obtain from two-point functions.

Fits



 $t_{min} = 20, t_{max} = 30,$ Smearing = 4,  $G_s = 2.9(7)$ Smearing = 16,  $G_s = 2.7(6)$ Smearing = 25,  $G_s = 2.6(6)$ 

 $t_{min} = 20, t_{max} = 30,$ Smearing = 4, G<sub>s</sub> = 4.4(1.8) Smearing = 25, G<sub>s</sub> = 2.9(1.2)

## Results

- Naively,  $a_t(m_s m_{crit}) \approx 0.013$ ,  $a_t m_N \approx 0.2$ ,  $\langle N|ss|N \rangle \approx 3$
- (m<sub>s</sub>- m<sub>crit</sub>) <N|ss|N> ≈ 200 MeV
- $f_{Ts} \approx 0.2 larger$  than other lattice calculations,  $f_{Ts} \le 0.1$
- Not yet renormalized!
- Lack of chiral symmetry in Wilson formulation mixing between light and strange scalar matrix elements.
- Plans to carry out renormalization procedure.

# Summary

- Calculation of strange scalar form factor.
- **Preliminary** value  $\langle N|ss|N \rangle \sim 3$ , 30% statistical error.
- Need to carry out calculation of renormalization coefficients to correctly calculate mixing.
- Multiple source/sink smearing combinations. Apply variational methods to reduce excited state contamination.
- Can perform additional measurments of nucleon correlator on existing lattices.
- Calculate axial, electric, magnetic form factors, also momentum dependence.

### Fits









