Observables from the low-lying eigenmodes of the lattice Dirac operator

Ting-Wai Chiu^{1,2}, Tung-Han Hsieh³ (for the TWQCD Collaboration)

¹ Department of physics, National Taiwan University
 ² Center for Quantum Science and Engineering
 ³ Research Center for Applied Sciences, Academia Sinica

June 29, 2012

A 32 b

Outline

Introduction

- Topological susceptibility.
- Banks-Casher relation.
- Simulation setup
- Projection of low-lying eigenmodes of the lattice Dirac operator
 - Adaptive Thick-Restart Lanczos algorithm
- Opological susceptibility
 - Topological charge distribution
 - Fitting of χ_t to ChPT
- Ohiral condensate
 - Near-zero modes density
 - Preliminary result
- Summary

A B A A B A

3

Introduction

The quantum fluctuations of the QCD vacuum are the origin of many interesting nonperturbative physics (e.g., spontaneous chiral symmetry breaking, confinement).

Each gauge conf. of QCD possesses a well-defined topological charge Q_t . The fluctuation of Q_t can be measured by the topological susceptibility:

$$\chi_t = \int d^4 x \{ \rho_Q(x) \rho_Q(0) \} = \frac{\langle Q_t^2 \rangle}{\Omega}$$
(1)

where Q_t can be determined unambigously in lattice QCD through the Atiyah-Singer index theorem [Atiyah & Singer (1968)]:

$$Q_t \equiv \int d^4 x \, \rho_Q(x) = n_+ - n_- = \operatorname{index}(\mathcal{D}) \tag{2}$$

向下 イヨト イヨト ニヨ

In ChPT, χ_t for $N_f = 2$ at tree level [Leutwyler & Smilga (1992)] and NLO [Mao & Chiu, PRD (2009)] are:

$$\chi_{t} = \Sigma (m_{u}^{-1} + m_{d}^{-1})^{-1}$$

$$\frac{\chi_{t}}{m_{q}} = \frac{\Sigma}{2} \left[1 - 3 \left(\frac{\Sigma m_{q}}{16\pi^{2} F_{\pi}^{4}} \right) \ln \left(\frac{2\Sigma m_{q}}{F_{\pi}^{2} \mu_{sub}^{2}} \right) + 32 \left(\frac{\Sigma}{F_{\pi}^{4}} \right) (2L_{6} + 2L_{7} + L_{8}) m_{q} \right]$$
(3)

Introduction (cont.)

The Banks-Casher relation [Banks, Casher, NPB (1980)] shows that Σ is due to the non-vanishing density of near-zero modes of D:

$$\Sigma = \pi \lim_{m_q \to 0} \lim_{\Omega \to \infty} \rho(0), \qquad \rho(\lambda) = \frac{1}{\Omega} \sum_{k}^{\infty} \langle \delta(\lambda - \lambda_k) \rangle$$
(5)

In principle, one can extract $\Sigma_{\rm eff}$ for each sea quark mass on a finite lattice [<code>Damgaard, Fukaya, JHEP</code> (2009)]:

•
$$\rho(\lambda) = \Sigma_{\text{eff}}/\pi = -\pi^{-1} \text{Re} \langle \bar{q}q \rangle |_{m_v = i\lambda}$$

 $\rho(\lambda)$: eigenmode density of the Dirac operator on the finite lattice.
 $\langle \bar{q}q \rangle$: constructed from low-lying eigenmodes of the Dirac operator.

•
$$\rho(0) = \Omega^{-1} N_{\text{conf}}^{-1} \left(\frac{dN}{d\lambda} \right) \Big|_{\lambda=0}$$

 $N(\lambda) = \Omega \int_0^{\lambda} d\lambda' \rho(\lambda')$: accumulated mode number below λ .

In NLO ChPT [Gasser, Leutwyler, Annals Phys. (1984)],

$$\Sigma_{\rm eff}(m_q) = \Sigma(0) \left[1 - \frac{3M_\pi^2}{32\pi^2 F^2} \ln \frac{M_\pi^2}{\mu_{\rm sub}^2} + \frac{32L_6M_\pi^2}{F^2} \right]$$
(6)

- ★ 글 ▶ - ★ 글 ▶ - - 글

Simulation setup (see Ting-Wai Chiu's talk in this session)

In this work, we perform the HMC simulations of two flavors QCD with ODWF on the $16^3 \times 32$, $N_s = 16$ lattice, for 8 sea-quark masses $m_q a = 0.01, 0.02, \ldots, 0.08$, and the plaquette gauge action at $\beta = 5.95$, with lattice spacing a = 0.1032(2) fm (1/a = 1.909(1) GeV).

Mathematically, ODWF is a theoretical framework which preserves the chiral symmetry optimally for any N_s [Chiu, PRL (2003)] The 4D effective Dirac operator of massless ODWF is

TWC, THH (TWQCD Collaboration)

Low-mode observables (LATT2012)

Low-mode projection of the Dirac operator

For each sampled gauge conf., we project zero modes plus 80+80 conjugate pairs of low-lying eigenmodes of the effective 4-D operator of ODWF (i.e., the overlap Dirac operator with Zolotarev optimal approximation), with 128 poles in order to keep high precision of the chiral symmetry.

 $D_{ov} = m_0(1+V), \qquad V \equiv \gamma_5 H_w R_Z(H_w) \xrightarrow{N_s \to \infty} \gamma_5 \operatorname{sign}(H_w)$ (7)

Thus the eigen-problem of D_{ov} can be parameterized as:

$$D_{ov}|\theta\rangle = \lambda(\theta)|\theta\rangle, \qquad \lambda(\theta) = m_0(1+e^{i\theta}),$$
 (8)

Since $[D_{ov}D_{ov}^{\dagger},\gamma_5]=$ 0, one can decompose the eigen-problem to

$$S_{\pm}|\theta\rangle_{\pm} \equiv P_{\pm}H_{w}R_{Z}(H_{w})P_{\pm}|\theta\rangle_{\pm} = \pm\cos\theta|\theta\rangle_{\pm}$$

$$|\theta\rangle = |\theta\rangle_{+} + |\theta\rangle_{-} = \frac{1}{i\sin\theta}(V - e^{-i\theta})|\theta\rangle_{+} \qquad \theta \neq 0, \pm\pi, ... (10)$$

Thus, one can perform the eigenmode projection on the operator S_{\pm} .

Thick-Restart Lanczos algorithm (TRLan)

Basic Lanczos iteration:

 $AQ_m = Q_m T_m + \beta_m q_{m+1} e_m^T$

- T_m : $m \times m$ tridiagonal.
- $Q_m = [q_1, q_2, \dots, q_m],$ (*m*-dim. complete set).
- $\beta_m q_{m+1} e_m^T$: residule vec.

algorithm

Input:
$$r_0$$
, $\beta_0 = ||r_0||$, $q_0 = 0$

For: i = 1, 2, ...

- $q_i = r_{i-1}/\beta_{i-1}$
- $p = Aq_i$
- $\alpha_i = q_i^H p$

•
$$r_i = p - \alpha_i q_i - \beta_{i-1} q_{i-1}$$

• $\beta_i = ||\mathbf{r}_i||$

The Ritz pair $(\hat{\lambda}_i, \hat{x}_i)$:

 $\hat{T}_m = U_m^{\dagger} T_m U_m, \qquad X_m = Q_m U_m$

where \hat{T}_m is diagonal with eigenvalues $\hat{\lambda}_i$, U_m is unitary, and X_m has columns \hat{x}_i . When $m \to \infty$, $(\hat{\lambda}_i, \hat{x}_i) \to (\lambda_i, x_i)$

Thick Restart:

The schematic diagram for the Thick-Restart Lanczos process. The non-zero values of the T matrix are illustrated as black lines.

Adaptive Thick-Restart Lanczos algorithm (ν -TRLan)

To maximize the performance, which depends on the truncated dim. k and the dim. of the Krylov subpace m, one search for the optimal k to maximize the object function: [Yamazaki *et al*, ACM Trans. Math. Software (2010)]

$$f_j^{(l)}(k) = d_j^{(l)} / (\# \text{ of FPO})$$
 (11)

 $d_i^{(l)}$: the reduction factor of *j*-th non-converged Ritz pair at *l*-th restart.

TWC, THH (TWQCD Collaboration) Low-mode observables (LATT2012)

Topological charge distribution ($N_{\rm conf} = 500$)

э

Fitting χ_t to ChPT ($N_{\rm conf} = 500$)

Fitting χ_t to ChPT ($N_{\rm conf} = 300$)

Near-zero mode density: $\Delta N / \Delta \lambda$

Near-zero mode density: $N(\lambda)$

-

< ∃⇒

э

•
$$\rho(0) = \frac{1}{\Omega} \frac{1}{N_{\text{conf}}} \left. \frac{dN}{d\lambda} \right|_0$$

• $\Sigma = \lim_{m_q \to 0} \pi \rho(0)$

•
$$Z_s^{\overline{\text{MS}}}(2 \text{ GeV}) = 1.244(18)(39)$$

•
$$\Sigma^{\overline{MS}}(2 \text{ GeV}) = Z_s \Sigma = [226(5)(10) \text{ MeV}]^3$$

preliminary !

白マ くほう くほう

э.

Summary

- We have performed $N_f = 2$ lattice QCD simulation with ODWF:
 - lattice size: $16^3 \times 32$, $N_s = 16$, with $m_{\rm res}a \le 0.0004$.
 - lattice spacing: $a \simeq 0.1$ fm, 1/a = 1.909(1) GeV.
 - 8 sea quark masses: $0.01 \le m_q a \le 0.08$, with statistics $N_{\rm conf} = 500$.
- We project zero modes plus 80+80 conjugate pairs of low-lying eigenmodes of the effective 4-D operator of ODWF, using the Adaptive Lanczos Thick-Restart algorithm.
- Fitting χ_t to NLO ChPT:

$N_{ m conf}$	$[\Sigma^{\overline{\mathrm{MS}}}(2 \ \mathrm{GeV})]^{1/3}$	F_{π} (MeV)	$(2L_6 + 2L_7 + L_8)$
300	259(6)(7)	92(12)(2)	-0.0001(3)
500	251(9)(13)	94(15)(25)	-0.0004(5)

- We measured the near-zero mode density $\Delta N / \Delta \lambda$, and $N(\lambda)$, in order to extract Σ via Banks-Casher relation.
- Fitting Σ to NLO ChPT is in progress.