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Motivation

Nc = 2 QCD fundamental
I Lattice simulations (non-zero chemical potential + even

number of pairwise degenerate quarks)
→ No sign problem

I Technicolor: 6 ≤ Nf ≤ 10 (within the conformal window)
I Compare to SU(3): 8 ≤ Nf ≤ 16

(Appelquist et al (2007),Bursa et al (2010),Hasenfratz (2010), Rummukainen (2011))

Savvas Zafeiropoulos Stony Brook University



Motivation

Nc = 2 QCD fundamental
I Lattice simulations (non-zero chemical potential + even

number of pairwise degenerate quarks)
→ No sign problem

I Technicolor: 6 ≤ Nf ≤ 10 (within the conformal window)
I Compare to SU(3): 8 ≤ Nf ≤ 16

(Appelquist et al (2007),Bursa et al (2010),Hasenfratz (2010), Rummukainen (2011))

Savvas Zafeiropoulos Stony Brook University



Motivation

Nc = 2 QCD fundamental
I Lattice simulations (non-zero chemical potential + even

number of pairwise degenerate quarks)
→ No sign problem

I Technicolor: 6 ≤ Nf ≤ 10 (within the conformal window)
I Compare to SU(3): 8 ≤ Nf ≤ 16

(Appelquist et al (2007),Bursa et al (2010),Hasenfratz (2010), Rummukainen (2011))

Savvas Zafeiropoulos Stony Brook University



Motivation

Any-color QCD with quarks in the adjoint

I Lattice SUSY YM
Rigorous definition and Non-perturbative control

I Technicolor : SU(2) with two adjoint fermions most likely in
the conformal window
Studies with unimproved Wilson fermions large O(a) errors
(Bursa et al (2009),Rummukainen(2011))

I Another universality class in Random Matrix Theory
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Introduction of the Model
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Random Matrix Theory- Dyson’s threefold way

I Classification according to antiunitary symmetries of QCD
and QCD like theories
Verbaarschot (1994)

I Three distinct classes

I Real β = 1
I Complex β = 2
I Quaternion β = 4
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The Goal

I Effect of lattice spacing on the low-lying Dirac eigenvalues
I Behavior of the spectral gap of D5 + mγ5 = γ5(DW + m) at

finite mass with different lattice spacings
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Mean field result for ρ5 of β = 2
at the onset of the Aoki phase
Akemann et al (2010)
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Nc = 2 fundamental (arbitrary Nc adjoint)
I Partition function of D5 with Nf flavors :

Z RMT ,ν
Nf

=
∫

dD5detNf (D5 + mγ5 + z)P(D5)

I P(D5)→ is a Gaussian

I D5 =

(
aA W
W † aB

)
(Damgaard et al (2010),Akemann et al (2010), Kieburg et al (2011)

I A : n × n Real Symmetric (Quaternion self dual)
I B : (n + ν)× (n + ν) Real Symmetric (Quaternion self dual)
I W : n × (n + ν) Real (Quaternion)
I At a = 0 : DW has ν generic zero modes
I At finite a : definition of the index through spectral flow lines

or equivalently ν =
∑
λW

k ∈R

sign(〈k |γ5|k〉) Itoh et al (1987)
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Chiral Lagrangians
Microscopic limit : m̂ = mV Σ, ẑ = zV Σ, â2 = a2V fixed

V →∞
Solution:

I

Z ν
Nf

=

∫
M

dµ(U)detκU

× exp
[

tr
m̂
2

(U + U−1)

]
× exp

[
tr

ẑ
2

(U − U−1)− â2tr (U2 + U−2)

]
I M = U(2Nf )/Sp(2Nf ) orM = U(2Nf )/O(2Nf )

I κ = ν/2 or κ = ν

I Double trace terms have not been considered
Savvas Zafeiropoulos Stony Brook University



SUSY generating functional
I Using SUSY for partially quenched partition function of D5

I By adding one pair of bosonic and fermionic quarks and
replacing U → iU

ZνNf+1|1 =

∫
Ms

dµ(U)Sdet κU exp
[

i
2

Str M̂(U − U−1)

]
× exp

[
i
2

Str Ẑ (U + U−1) + â2Str (U2 + U−2)

]
I The same Goldstone manifold
Ms = U (Nf + 2|2)/UOSp (Nf + 2|2) as for a = 0

I M̂ = diag (m̂ + Jm, m̂ + Jm, m̂, m̂)

I Ẑ = diag (ẑ + Jz , ẑ + Jz , ẑ, ẑ)]
I Jm = Jz = 0→ Nf flavor partition function
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Quenched microscopic spectral density of D5

I Generating function for the D5 spectrum:
ZνNf+1|1(m̂, ẑ, ẑ ′; â) =〈

detNf (γ5(DW + m̂))
det(γ5(DW + m̂) + ẑ)

det(γ5(DW + m̂) + ẑ ′)

〉
ν

I Quenched resolvent :

Gν(ẑ, m̂; â) = lim
Jz→0

∂JzZν1|1 =

〈
tr

1
D5 + ẑ

〉
I Quenched spectral density :
ρν5(λ̂5, m̂; â) = 1

π Im [Gν(ẑ = λ̂5, m̂; â)]
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The Eigenvalue Densities
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Lattice results of ρ5 of β = 2

â6 = â7 = 0.25, â8 = 0.7
m̂ = 5.3
ν = 0 (top) and
ν = 1 (bottom)
(Deuzeman,Wenger and Wuilloud(2011))
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ρ5 of β = 1 with ν = 0 and m̂ = 0

analytical result (continuous curves) vs Monte Carlo simulation
(histograms)
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ρ5 of β = 1 with ν = 0
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Distribution of the first eigenvalue of the β = 1 D5
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ρ5 of β = 1 with ν = 2
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Eigenvalues of DW with ν = 5 for β = 1

â = 0 â = 1
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ρ5 of β = 4 with m̂ = 0
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Conclusions

I Random Matrix Theory for QCD-like theories with Wilson
fermions

I Nf flavor partition function
I Spectral density of D5

I The max at zero virtuality of β = 1 becomes a minimum as
a 6= 0 !
ρ5(0) jumps discontinuously

I Oscillations tend to vanish for increasing a as for β = 2
I ν generic zero modes become real modes
I Additional complex eigenvalues enter the real axis for

increasing a as for β = 2
I Stronger oscillations persistent with a for β = 4
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Outlook

I Unquenched QCD like theories
I χSB from lattice spacing
I Stability of lattice simulations in the deep chiral regime
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for upcoming results . . .
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Thank you for your attention!

Collaborators:
Mario Kieburg
Jacobus J. M. Verbaarschot
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Appendix

Eigenvalue flow

5λ
k
(m)

Eigenvalue flow (Splittorff and Verbaarschot (2011))
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Appendix
Additional Real Modes
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Log-log plot of the average number of
additional real modes over â for β = 2
(Kieburg, Verbaarschot and S.Z. (2011))
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Appendix
Fitting for W8

ρ5 of the β = 2 D5 for ν = 1
(blue),distribution of the smallest
eigenvalue for ν = 1 (red) in the
saddle point σ/∆Λ ∝ a

√
W8V

(Akemann,Damgaard,Splittorff and Verbaarschot . (2011))
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