2+1 flavor QCD results of nuclear forces

Noriyoshi Ishii for HAL QCD Coll.

Background

For many years,

we have studied nuclear forces and inter-baryon potentials by using Nambu-Bethe-Salpeter (NBS) wave functions based on the HAL QCD method.

Last year,

we have developed an efficient method to obtain the HAL QCD potentials, which does not require the ground state saturation of NBS wave functions. ("Time-dependent" Schrodinger-like equation)

By using this new method, we reanalyze 2+1 flavor lattice QCD results of NN potentials with increasing statistics and discuss the behaviors of NN phase shifts.

Nambu-Bethe-Salpeter (NBS) wave function

 $\langle 0 | T[N(x)N(y)] | N(\vec{k})N(-\vec{k}), in \rangle$

a. It contains the information of S-matrix

$$S \equiv \langle N(\vec{p})N(-\vec{p}), \text{out} | N(\vec{k})N(-\vec{k}), \text{in} \rangle$$

= disc.+ $i^2 \int d^4 x_1 d^4 x_2 e^{ip_1x_1} (\Box_1 + m^2) e^{ip_2x_2} (\Box_2 + m^2)$
× $\langle 0 | T[N(x)N(y)] | N(\vec{k})N(-\vec{k}), \text{in} \rangle$

b. On the **equal-time** plane $(x_0 = y_0)$, exactly the same behavior as scattering wave functions of QM.

$$\psi_{\vec{k}}(\vec{x}-\vec{y}) \equiv Z_N^{-1} \langle 0 | T[N(\vec{x},x_0=+0)N(\vec{y},y_0=-0)] | N(\vec{k})N(-\vec{k}), \text{in} \rangle$$

$$\simeq e^{i\delta(k)} \frac{\sin(kr+\delta(k))}{kr} + \cdots \qquad \text{(for } | \vec{x}-\vec{y} | \rightarrow \infty)$$

[C.-J.D.Lin et al., NPB619(2001)467.]

c. Energy-independent potential U(x, x') is defined from Schrodinger equation

$$(k^{2} / m_{N} - H_{0}) \psi_{\vec{k}}(\vec{x}) = \int d^{3}x' U(\vec{x}, \vec{x'}) \psi_{\vec{k}}(\vec{x'})$$

The resulting potential is faithful to the scattering phase $\delta(k)$ because of (b)

"Time-dependent" method (an efficient way to obtain HAL QCD potentials)

Normalized NN correlator (R-correlator)

$$R(t,\vec{x}) \equiv e^{2m_N \cdot t} \langle 0 | T[N(\vec{x},t)N(\vec{y},t) \cdot \overline{\mathcal{J}}_{NN}(t=0)] | 0 \rangle$$
$$= \sum_{\vec{k}} a_{\vec{k}} \exp\left(-t\Delta W(\vec{k})\right) \psi_{\vec{k}}(\vec{x}) \qquad \text{t has inela}$$

$$\Delta W(\vec{k}) \equiv 2\sqrt{m_N^2 + \vec{k}^2} - 2m_N$$

t has to be sufficiently large to suppress inelastic contribution ($E > 2m_N + m_{pion}$).

 $\begin{aligned} \text{"Time-dependent" Schrodinger-like equation (derivation)} \\ -\frac{\partial}{\partial t}R(t,\vec{x}) &= \sum_{\vec{k}} a_{\vec{k}} \Delta W(\vec{k}) \exp\left(-t\Delta W(\vec{k})\right) \psi_{\vec{k}}(\vec{x}) \\ &= \sum_{\vec{k}} a_{\vec{k}} \left(\frac{\vec{k}^2}{m_N} - \frac{\Delta W(\vec{k})^2}{4m_N}\right) \exp\left(-t\Delta W(\vec{k})\right) \psi_{\vec{k}}(\vec{x}) \\ &= \sum_{\vec{k}} a_{\vec{k}} \left(\frac{\vec{k}^2}{m_N} - \frac{\Delta W(\vec{k})^2}{4m_N}\right) \exp\left(-t\Delta W(\vec{k})\right) \psi_{\vec{k}}(\vec{x}) \\ &= \sum_{\vec{k}} a_{\vec{k}} \left(H_0 + U - \frac{1}{4m_N} \frac{\partial^2}{\partial t^2}\right) \exp\left(-t\Delta W(\vec{k})\right) \psi_{\vec{k}}(\vec{x}) \\ &= \left(\frac{1}{4m_N} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right) R(t,\vec{x}) = \int d^3 x' U(\vec{x},\vec{x}') R(t,\vec{x}') \end{aligned}$

The "time-dependent" Schrodinger-like equation enables us to obtain the nuclear potential without requiring the ground state saturation..

[N.Ishii et al., PLB712(2012)437.]

Ground state saturation is not needed. (an example)

- Source function (with a single real parameter alpha) $f(x, y, z) = 1 + \alpha \left(\cos(2\pi x/L) + \cos(2\pi y/L) + \cos(2\pi z/L) \right)$
- alpha is used change the mixtures of NBS wave function

"Time-dependent" Schrodinger-like equation leads to alpha-independent result.

$$\left(\frac{1}{4m_N}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right)R(t,\vec{x}) = \int d^3x' U(\vec{x},\vec{x}')R(t,\vec{x}')$$

2+1 flavor QCD results of nuclear forces by "time-depenent" method

2=1 flavor QCD results of nuclear forces

- Iattice QCD setup
 - □ 2+1 flavor gauge configuration generated by PACS-CS Coll.
 - ✤ 32³x64 lattice
 - ✤ Iwasage gauge action at beta=1.9
 → a=0.09 fm (L = 32a = 2.9 fm)
 - Nonperturbatively O(a) improved Wilson (clover) action with C_{sw} = 1.715
 - $m_{pion} = 700 \text{ MeV}$
 - m_{pion} = 570 MeV
 - $m_{pion} = 411 \text{ MeV}$
 - □ 4-point nucleon correlator

for NBS wave functions and potentials

- ✤ wall source
- number of source points
 - − m_{pion} = 700 MeV \rightarrow 31 source points
 - − m_{pion} = 570 MeV → 32 source points
 - − m_{pion} = 411 MeV → 25 source points

NN potentials are obtained at the leading order of derivative expansion:

$$U(\vec{x}, \vec{x}') = V(\vec{x}, \vec{\nabla}) \delta(\vec{x} - \vec{x}')$$
$$V(\vec{x}, \vec{\nabla}) \equiv V_{\rm C}(\vec{x}) + V_{\rm T}(\vec{x}) S_{12} + O(\nabla)$$

Choise of t

Our choise of t in this talk:

2+1 flavor QCD results of nuclear forces by "time-dependent" method

Phenomenological properties of nuclear forces are reproduced

2+1 flavor QCD results of nuclear forces by "time-dependent" method

quark mass dependence

Fit of the potentials and Phase shift

Fit function

AV18-like fit function (general form) $V_{\rm MM}(r) \equiv v^{\pi}(r) + v^{R}(r)$ $v^{\pi}(r) \equiv f^{2} \cdot (\vec{\tau}_{1} \cdot \vec{\tau}_{2}) \frac{m_{\pi}}{2} \left(Y(r; \boldsymbol{c}) \cdot (\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) + T(r; \boldsymbol{c}) \cdot S_{12} \right)$ $v_{ST}^{R}(r) \equiv v_{ST}^{c}(r) + v_{ST}^{t}(r)S_{12} + \cdots$ $v_{ST}^{i}(r) \equiv I_{TS}^{i} \cdot T^{2}(r; c) + \left(P_{TS}^{i} + (m_{\pi}r)Q_{TS}^{i} + (m_{\pi}r)^{2}R_{TS}^{i}\right)W(r; r_{0}, a)$ $Y(r; c) \equiv \frac{e^{-m_{\pi}r}}{m_{\pi}r} \left(1 - \exp(-cr^2)\right)$ [Yukawa function] $T(r; c) = \left(1 + \frac{3}{mr} + \frac{3}{(mr)^2}\right) \frac{e^{-m_{\pi}r}}{mr} \left(1 - \exp(-cr^2)\right)^2 \quad [\text{Tensor function}]$ $W(r; \mathbf{r}_0, \mathbf{a}) \equiv \left| 1 + \exp\left(\frac{r - \mathbf{r}_0}{a}\right) \right|^{-1}$ [Woods-Saxon function]

We do not use the constraints at the origin which are imposed on the fit parameters in the original AV18.

Values of m_{π} are fixed and are taken from PACS-CS Coll.,PRD79,034503('09)

→ Simultaneous fit of two V_C(r) and one V_T(r) with 16 adjustable parameters
 □ Central potential (1S0)

$$W_{\rm C}(r; {}^{1}S_{0}) = -f^{2}m_{\pi}Y(r; c) + I_{10}^{c} \cdot T^{2}(r; c) + \left(P_{10}^{c} + Q_{10}^{c} \cdot (m_{\pi}r) + R_{10}^{c} \cdot (m_{\pi}r)^{2}\right)W(r; r_{0}, a)$$

Central potential (3S1-3D1)

 $V_{\rm C}(r; {}^{3}S_{1} - {}^{3}D_{1}) = -f^{2}m_{\pi}Y(r; c) + I_{01}^{c} \cdot T^{2}(r; c) + \left(P_{01}^{c} + Q_{01}^{c} \cdot (m_{\pi}r) + R_{01}^{c} \cdot (m_{\pi}r)^{2}\right)W(r; r_{0}, a)$

D Tensor potential (3S1-3D1) $V_{\rm T}(r; {}^{3}S_{1} - {}^{3}D_{1}) = -f^{2}m_{\pi}T(r; c) + I_{01}^{t} \cdot T^{2}(r; c) + \left(P_{01}^{t} + Q_{01}^{t} \cdot (m_{\pi}r) + R_{01}^{t} \cdot (m_{\pi}r)^{2}\right)W(r; r_{0}, a)$

Fit function

• We attempt to take into account boundary effect

Receiving contributions from periodic images, the original potential is modified as

$$V(\vec{r}) \qquad \qquad \qquad \tilde{V}(\vec{r}) = \sum_{\vec{n} \in \mathbb{Z}^3} V(\vec{r} + L\vec{n})$$

Fitting region for the tensor potential

Our tensor potential has a cusp around r = 0.12 fm, where a fit with a smooth function becomes difficult.

Fit (Results)

These fit functions nicely parameterize the lattice data.

Fit(comment on the quark mass and the spatial volume)

- The same fit functions work for other pion mass.
- Boundary effect becomes important for m_{pion} = 411 MeV.
 (See deviation between of blue from yellow)
- For calculation with m_{pion} < 411 MeV, Larger spatial volume (L > 3fm) should be used.

 $\tilde{V}(\vec{r}) = \sum V(\vec{r} + L\vec{n})$

Scattering phase (¹S₀)

Qualitatively reasonable behavior.
 But the strength is significantly weak.

- Attraction shrinks gradually as m_{pion} decreases in this quark mass region m_{pion} = 411-700 MeV.
- The repulsive core grows more rapidly than the attraction grows.
- It is important to go to smaller quark mass region.

<u>Phase shifts and mixing parameter $({}^{3}S_{1} - {}^{3}D_{1})$ </u>

Stapp's convension is employed for the scattering phases and mixing parameter.

Summary

We have applied the "time-dependent" Schrodinger-like equation to the 2+1 flavor QCD results of nuclear potentials for m_{pion} = 411, 570, 700 MeV.

$$\left(\frac{1}{4m_N}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right)R(t,\vec{x}) = \int d^3x' U(\vec{x},\vec{x}')R(t,\vec{x}')$$

The equation allows us to obtain the nuclear potentials without requiring the ground state saturation.

- The resulting potentials are parameterized by "AV18-like" fit functions, Smooth parameterization of the lattice data is obtained.
- By solving Schrodinger equation, we have obtained the scattering phases.
 Behaviors are qualitatively reasonable.
 But the strength is not sufficient.
 - \square As m_{pion} decreases, the attraction shrinks.
 - Repulsive core grows more rapid than the attractive pocket grows.
 - It is important to go to much lighter quark mass region.

Backup slides

Existence of energy-independent interaction kernel

• We assume linear independence of NBS wave function below pion threshold. • There is a dual basis $E \equiv 2\sqrt{m_N^2 + \vec{k}^2} < 2m_N + m_{\pi}$

$$\int d^3 r \widetilde{\psi}_{\vec{k}'}(\vec{r}) \psi_{\vec{k}}(\vec{r}) = (2\pi)^3 \delta^3(\vec{k}' - \vec{k})$$

We have

$$K_{\vec{k}}(\vec{r}) \equiv \left(\Delta + k^{2}\right) \psi_{\vec{k}}(\vec{r})$$

= $\int \frac{d^{3}k'}{(2\pi)^{3}} K_{\vec{k}'}(\vec{r}) \int d^{3}r' \widetilde{\psi}_{\vec{k}'}(\vec{r}) \psi_{\vec{k}}(\vec{r})$
= $\int d^{3}r' \left\{ \int \frac{d^{3}k}{(2\pi)^{3}} K_{\vec{k}'}(\vec{r}) \widetilde{\psi}_{\vec{k}'}(\vec{r}') \right\} \psi_{\vec{k}}(\vec{r}')$

If we define

$$U(\vec{r}, \vec{r'}) = \frac{1}{m_N} \int \frac{d^3 k'}{(2\pi)^3} K_{\vec{k'}}(\vec{r}) \widetilde{\psi}_{\vec{k'}}(\vec{r})$$

then we have

$$\frac{1}{m_N} \left(\Delta + k^2 \right) \psi_{\vec{k}}(\vec{r}) = \int d^3 r' U(\vec{r}, \vec{r'}) \psi_{\vec{k}}(\vec{r})$$

for
$$E \equiv 2\sqrt{m_N^2 + \vec{k}^2} < 2m_N + m_{\pi}$$