Bound states of multi-nucleon channels $\label{eq:multi-nucleon} \text{in } N_f = 2 + 1 \text{ lattice QCD}$

Takeshi Yamazaki

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe Nagoya University

Y. Kuramashi and A. Ukawa

Refs: PRD81:111504(R)(2010); PRD84:054506(2011)

Lattice 2012 @ Cairns Convention Centre, June 24-29 2012

Outline

- 1. Introduction
- 2. Simulation parameters
- 3. Preliminary results
 - ⁴He and ³He channels
 - NN channels
- 4. Summary and future work

1. Introduction

Spectrum of nuclei

success of Shell model: Jensen and Mayer(1949) degrees of freedom of protons and neutrons

Spectrum of proton and neutron (nucleons) success of non-perturbative calculation of QCD such as lattice QCD

degrees of freedom of quarks and gluons

1. Introduction

Spectrum of proton and neutron (nucleons) success of non-perturbative calculation of QCD such as lattice QCD

degrees of freedom of quarks and gluons

Motivation: Understand property of nuclei from (lattice) QCD

 $\begin{array}{l} \mbox{Shell model} \\ \mbox{quarks and gluons} \rightarrow \mbox{protons and neutrons} \rightarrow \mbox{nuclei} \\ \mbox{(lattice) QCD} \end{array}$

1. Introduction

Motivation :

Understand property and structure of nuclei from QCD

If we can study nuclei from QCD, we may be able to

- 1. reproduce spectrum of nuclei
- 2. predict property of nuclei hard to calculate or observe such as neutron rich nuclei

So far only few works for multi-baryon bound states Before studying such difficult problems, we should check

 \rightarrow Can we calculate known binding energy in a-few-nucleon systems?

Multi-baryon bound state from lattice QCD

Not observed before '09 (except H-dibaryon '88 Iwasaki et al.)

Recent studies of lattice QCD for bound state of multi-baryon systems

1. ⁴He and ³He channels

'10 PACS-CS $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$ PRD81:111504(R)(2010)

2. H dibaryon in $\Lambda\Lambda$ channel (S=-2, I=0)

'11 NPLQCD $N_f = 2 + 1 \ m_{\pi} = 0.39 \ \text{GeV}$

'11 HALQCD $N_f = 3 m_{\pi} = 0.67 - 1.02 \text{ GeV}$

11 Luo et al.
$$N_f = 0 \ m_{\pi} = 0.5 - 1.3 \ \text{GeV}$$

3. NN channels

'11 PACS-CS $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$ PRD84:054506(2011) '12 NPLQCD $N_f = 2 + 1 \ m_{\pi} = 0.39 \text{ GeV}$ (Possibility)

4. 三三 channel

'12 NPLQCD $N_f = 2 + 1 \ m_{\pi} = 0.39 \ \text{GeV}$

Other studies: 2- and 3-nucleon forces HALQCD, $\Omega\Omega$ channel Buchoff et al.

Extend our works to $N_f = 2 + 1$ QCD with smaller m_{π} and a c.f. '12 NPLQCD $N_f = 3 m_{\pi} = 0.8$ GeV: ⁴He, ³He, NN and others

Problems of multi-nucleon bound state

Traditional method for example ⁴He channel $\langle 0|O_{4}_{He}(t)O_{4}^{\dagger}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|O_{4}^{\dagger}_{He}|0\rangle e^{-E_{n}t} \xrightarrow[t\gg1]{} A_{0} e^{-E_{0}t}$

Difficulties for multi-nucleon calculation

1. Statistical error Statistical error $\propto \exp\left(N_N\left[m_N-\frac{3}{2}m_\pi\right]t\right)$

2. Calculation cost

Wick contraction for ${}^{4}\text{He} = p^{2}n^{2} = (udu)^{2}(dud)^{2}$: 518400

3. Identification of bound state on finite volume

Finite volume effect of attractive scattering state $\Delta E_0 = E_0 - N_N m_N < 0$

Problems of multi-nucleon bound state

Traditional method for example ⁴He channel $\langle 0|O_{4}_{He}(t)O_{4}^{\dagger}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|O_{4}^{\dagger}_{He}|0\rangle e^{-E_{n}t} \xrightarrow{t \gg 1} A_{0} e^{-E_{0}t}$

Difficulties for multi-nucleon calculation

1. Statistical error

Statistical error $\propto \exp\left(N_N\left[m_N - \frac{3}{2}m_\pi\right]t\right)$

→ heavy quark mass $m_{\pi} = 0.5 \text{ GeV} + \text{large } \# \text{ of measurements}$ 2. Calculation cost PACS-CS PRD81:111504(R)(2010)

Wick contraction for ${}^{4}\text{He} = p^{2}n^{2} = (udu)^{2}(dud)^{2}$: 518400 \rightarrow 1107

 \rightarrow reduction using $p(n) \leftrightarrow p(n) p \leftrightarrow n$, $u(d) \leftrightarrow u(d)$ in p(n)

Multi-meson: '10 Detmold and Savage, Multi-baryon: '12 Doi and Endres

3. Identification of bound state on finite volume

Finite volume effect of attractive scattering state $\Delta E_0 = E_0 - N_N m_N < 0$

 \rightarrow Volume dependence of ΔE '86,'91 Lüscher, '07 Beane *et al.*

Spectral weight: '04 Mathur et al., Anti-PBC '05 Ishii et al.

2. Simulation parameters

$N_f = 2 + 1 \text{ QCD}$

Iwasaki gauge action at $\beta = 1.90$

 $a^{-1} = 2.194$ GeV with $m_{\Omega} = 1.6725$ GeV '10 PACS-CS non-perturbative O(a)-improved Wilson fermion action $m_{\pi} = 0.51$ GeV and $m_N = 1.32$ GeV

 $m_s \sim$ physical strange quark mass

Finite volume dependence of ΔE_0 with four volumes (⁴He, ³He, ³S₁ and ¹S₀ channels)

L	<i>L</i> [fm]	N _{Traj}	N _{conf}	Nmeas
32	2.9	4000	200	192
40	3.6	2000	200	192
48	4.3	2000	200	192
64	5.8	1900	190	256

Simulations:

PACS-CS, T2K-Tsukuba, HA-PACS at Univ. of Tsukuba, HA8000 at Univ. of Tokyo and K at AICS

- Statistical error under control in t < 12
- Relatively smaller error in ³He channel
- Negative ΔE_L in both channels

3. Preliminary results ⁴He and ³He channels $\Delta E_L = E_0 - N_N m_N$

• $\Delta E_L < 0$ and small volume dependence

• Infinite volume extrapolation with $\Delta E_L = -\Delta E_{bind} + C/L^3$

3. Preliminary results ⁴He and ³He channels $\Delta E_L = E_0 - N_N m_N$

2. Similar to quenched result

open symbols: quenched at $m_{\pi} = 0.8$ GeV, PRD81:111504(R)(2010)

3. Preliminary results ⁴He and ³He channels $\Delta E_L = E_0 - N_N m_N$

Large quark mass effect? Further investigation is necessary.

- Statistical error under control in $t \leq 12$
- Relatively smaller error than ${}^{4}\text{He}$ and ${}^{3}\text{He}$ channels
- Negative ΔE_L in both channels

t

t

20

3. Preliminary results NN (${}^{3}S_{1}$ and ${}^{1}S_{0}$) channels $\Delta E_{L} = E_{0} - 2m_{N}$

- Negative ΔE_L
- Infinite volume extrapolation of ΔE_L '04 Beane et al., '06 Sasaki & TY

$$\Delta E_L = -\frac{\gamma^2}{m_N} \left\{ 1 + \frac{C_{\gamma}}{\gamma L} \sum_{\vec{n}}' \frac{\exp(-\gamma L \sqrt{\vec{n}^2})}{\sqrt{\vec{n}^2}} \right\}, \ \Delta E_{\text{bind}} = \frac{\gamma^2}{m_N}$$

based on Lüscher's finite volume formula

3. Preliminary results NN (${}^{3}S_{1}$ and ${}^{1}S_{0}$) channels $\Delta E_{L} = E_{0} - 2m_{N}$

- $\Delta E_{3S_{1}} = 11.5(1.1)(0.6) \text{ MeV}$ $\Delta E_{1S_{0}} = 7.4(1.3)(0.6) \text{ MeV}$
- Similar to quenched result at $m_{\pi} = 0.8$ GeV PRD84:054506(2011)
- Possibility of bound states $N_f = 2 + 1 m_{\pi} = 0.39 \text{ GeV}$ ('12 NPLQCD)

3. Preliminary results NN (${}^{3}S_{1}$ and ${}^{1}S_{0}$) channels $\Delta E_{L} = E_{0} - 2m_{N}$

$$\Delta E_{3S_{1}} = 11.5(1.1)(0.6) \text{ MeV} \qquad \Delta E_{1S_{0}} = 7.4(1.3)(0.6) \text{ MeV}$$

'12 NPLQCD: $N_{f} = 3 \ m_{\pi} = 0.8 \text{ GeV}$
 $\Delta E_{3S_{1}} = 25(3)(2) \text{ MeV} \qquad \Delta E_{1S_{0}} = 19(3)(1) \text{ MeV}$

Large quark mass effect? Further investigation is necessary.

filled(open) symbols: dynamical(quenched) results

Roughly consistent with other results Large sea quark effect? \leftarrow Our quenched and NPLQCD $N_f = 3$ results Large quark mass effect? \leftarrow This work and NPLQCD $N_f = 3$ result

Need further study of quark mass dependence

4. Summary and future work

Extend our exploratory, quenched studies to $N_f = 2 + 1$ lattice QCD

- Heavy quark mass of $m_{\pi} = 0.5 \text{ GeV}$
- Volume dependence of ΔE_0

 $\Delta E \neq 0$ of 0th state in infinite volume limit

- \rightarrow bound state in ⁴He, ³He, ³S₁ and ¹S₀ at $m_{\pi} = 0.5$ GeV
- \bullet Similar result to quenched ones \rightarrow ΔE larger than experiment
- Bound state in ${}^{1}S_{0}$ not observed in experiment Possibility in $N_{f} = 2 + 1$ at $m_{\pi} = 0.39$ GeV ('12 NPLQCD) Deep bound state in $N_{f} = 3$ at $m_{\pi} = 0.8$ GeV ('12 NPLQCD)

Need further investigations e.g. quark mass dependence

Back up

3. Preliminary results Effective nucleon mass at L = 5.8 fm $m_N = \log \left(\frac{C_N(t)}{C_N(t+1)} \right)$

3. Preliminary results Effective energy in ⁴He and ³He channels at L = 5.8 fm $E_0 = \log \left(\frac{C_{4}_{He}(t)}{C_{4}_{He}(t+1)}\right)$

Example of large quark mass dependence rms radii from form factors F_1 and F_2 '09 RBC + UKQCD

