Excited and Exotic Charmonium Spectroscopy From Lattice QCD

Liuming Liu

24th – 29th June, 2012 Cairns, Australia

Experimental Overview

We use the clover configurations generated by Hadron Spectroscopy Collaboration:

- $N_f = 2 + 1$ dynamical flavours
- Anisotropy: $\xi = a_s/a_t = 3.5$
- Lattice spacing: $a_s = 0.12$ fm, $a_t^{-1} = 5.667$ GeV
- Volume: 16³ × 128, 24³ × 128
- $m_{\pi} = 396 \text{ MeV}$
- Tree-level Symanzik-improved gauge action
- Wilson clover fermion action.

Phys. Rev. D84, 094506 (2011)

Spectroscopy on lattice

In lattice calculation, meson masses are extracted from two-point correlation functions:

$$C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0 \rangle = \sum_n \frac{Z_i^n Z_j^{n*}}{2E_n} e^{-E_n t}$$

where $Z_i^n = \langle n | \mathcal{O}_i^{\dagger} | 0 \rangle$ are referred as *overlaps*.

- It is essential that the operators overlap well with the states under consideration.
- Distillation quark smearing. Phys.Rev.D80:054506,2009 Smearing function: $\Box_{xy} = \sum_{k=1}^{N_{vecs}} v_x^{(k)} \otimes v_y^{(k)*}$ meson two-point correlation function:

 $C(t_1, t_0) = \text{tr} \left[\Phi_1(t_1) \tau(t_1, t_0) \Phi_0(t_0) \tau(t_0, t_1) \right]$

with

$$\Phi_a^{(i,j)} = v^{(i)*} \Gamma_a v^{(j)}$$
 and $\tau^{(i,j)} = v^{(i)*}(t_1) M^{-1}(t_1, t_0) v^{(j)}(t_0)$

Variational Method

- Large basis of interpolating operators $\{O_i\}$ with definite \int^{PC} .
- Construct the matrix of correlators C_{ij}(t)
- Solve the generalized eigenvalue problem

 $C_{ij}(t)v_j^n = \lambda_n(t)C_{ij}(t_0)v_j^n$

- Eigenvalues: $\lambda_n(t) \rightarrow e^{-m_n t} (1 + O(e^{-\Delta m t}))$
- Eigenvectors related to the overlaps:

 $Z_{i}^{n} = \sqrt{2m_{n}}e^{m_{n}t_{0}/2}v_{i}^{n*}C_{ji}(t_{0}).$

• Optimal linear combinations of the operators to overlap on a state : $\Omega^n \sim \sum_i v_i^n \mathcal{O}_i$.

Interpolating operators: in continuum space

- Continuum space: SO(3) symmetry \rightarrow spin (J, M).
- Simplest meson interpolation operators: local fermion bilinears.
 We (set) 5 and (set) 100 and 100 an

 $ar{\Psi}_{ilpha}(\mathbf{x},t)\Gamma_{lpha,eta}\Psi_{i,eta}(\mathbf{x},t)$, $J^{PC}=0^{-+},0^{++},1^{--},1^{++},1^{+-}$

• Non-local operators with definite (J, M),

 $\mathcal{O}^{J,M} \sim \bar{\Psi}(x) \Gamma_i \overleftrightarrow{D_i} \overleftrightarrow{D_j} \cdots \Psi(x)$

We use up to 3 derivative operators.

Interpolating operators: on lattice

• Lattice: cubic group → irreps ∧ (A_1 , A_2 , T_1 , T_2 , E). $\land d_{\Lambda} J$ $A_1 1 0, 4, 6, \cdots$ $A_2 1 3, 6, 7, \cdots$ $1 T_1(3)$ $T_1 3 1, 3, 4, \cdots$ $2 T_2(3) \oplus E(2)$ $T_2 3 2, 3, 4, \cdots$ $3 T_1(3) \oplus T_2(3) \oplus A_2(1)$ $E 2 2, 4, 5, \cdots$ $4 A_1(1) \oplus T_1(3) \oplus T_2(3) \oplus E(2)$

Subduction:

$$\mathcal{O}_{\Lambda,\lambda}^{[J]} = \sum_{M} \mathcal{S}_{\Lambda,\lambda}^{J,M} \mathcal{O}^{J,M}$$

Number of operators in each lattice irrep Λ^{PC}

In principle, the spin can be identified by the emergence the energy degenerate between different irreps in the continuum limit.

- Need calculations on different lattice spacing.
- Need high pricision.

Spin identification: overlaps (1)

The operator $\mathcal{O}^{[J]}_{\Lambda}$ carries a "memory" of the continuum spin J, from which it was subduced.

Spin identification: overlaps (1)

The operator $\mathcal{O}^{[J]}_{\Lambda}$ carries a "memory" of the continuum spin J, from which it was subduced.

Spin identification: overlaps (1)

The operator $\mathcal{O}^{[J]}_{\Lambda}$ carries a "memory" of the continuum spin J, from which it was subduced.

Spin identification: overlaps (2)

 $\begin{array}{l} \text{Comparing the overlaps in different lattice irreps.} \\ \text{In the continuum: } \langle 0 | \mathcal{O}^{J,M} | J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}, \\ \text{therefore} \qquad \langle 0 | \mathcal{O}^{[J]}_{\Lambda,\lambda} | J', M \rangle = \mathcal{S}^{J,M}_{\Lambda,\lambda} Z^J \delta_{J,J'}. \\ Z^J \text{ is common for different irreps.} \end{array}$

Spin identification: overlaps (2)

 $\begin{array}{l} \text{Comparing the overlaps in different lattice irreps.} \\ \text{In the continuum: } \langle 0 | \mathcal{O}^{J,M} | J', M' \rangle = Z^J \delta_{J,J'} \delta_{M,M'}, \\ \text{therefore} \qquad \langle 0 | \mathcal{O}^{[J]}_{\Lambda,\lambda} | J', M \rangle = \mathcal{S}^{J,M}_{\Lambda,\lambda} Z^J \delta_{J,J'}. \\ Z^J \text{ is common for different irreps.} \end{array}$

Discussions

- Hybrids.
 - Big overlap with the operators $\mathcal{O} \sim [D_i, D_j] \sim F_{i,j}$.
 - Lightest hybrid supermultiplet: $(J_q^{PC} = 1^{+-}) \times (c\bar{c} \text{ S-wave}) \rightarrow [(0, 1, 2)^{-+}, 1^{--}]$
 - Exited hybrid supermultiplet: $(J_g^{PC} = 1^{+-}) \times (c\bar{c} \text{ P-wave}) \rightarrow [0^{+-}, (1^{+1})^3, (2^{+-})^2, 3^{+-}, 0^{++}, 1^{++}, 2^{++}]$
- We see no multi-hadron state in our extracted spectra.
- Supermultiplets.

• Y(4260), $J^{PC} = 1^{--}$; X(3872), $J^{PC} = 2^{-+}$ or 1^{++} .

- Analysis of disconnected diagrams and flavour mixing.
- D-meson spectroscopy underway.
- Multi-hadron system.

Thank you!