CONTINUUM RESULTS FROM LATTICE V-A DATA

KM, J. Zanotti

(with P. Boyle, L. Del Debbio, N. Garron, R. Hudspith, E. Kerrane)

Lattice 2012, Cairns, Jun 28/12

OUTLINE

- The V-A correlator
- Some chiral LECs
- Constraints on excited PS decay constants

THE V-A CORRELATOR

- Objects of interest: $\Pi^{(J)}_{V-A}(Q^2)$, J = 0, 1
- Minkowski space:

$$\Pi^{\mu\nu}_{V/A}(q^2) \equiv i \int d^4x \, e^{iq \cdot x} \langle 0|T\left(J^{\mu}_{V/A}(x)J^{\dagger\nu}_{V/A}(0)\right)|0\rangle$$

= $\left(q^{\mu}q^{\nu} - q^2g^{\mu\nu}\right) \Pi^{(1)}_{V/A;ij}(q^2) + q^{\mu}q^{\nu} \Pi^{(0)}_{V/A;ij}(q^2)$

• Euclidean version:

$$\Pi^{\mu\nu}_{V/A}(Q^2) = \left(Q^2 \delta^{\mu\nu} - Q^{\mu}Q^{\nu}\right) \Pi^{(1)}_{V/A}(Q^2) - Q^{\mu}Q^{\nu} \Pi^{(0)}_{V/A}(Q^2)$$

General Properties

- $q^2 = 0$ kinematic singularities for $\Pi_{V-A}^{(0,1)}$, none for $s \Pi_{V-A}^{(0)}$, $\Pi_{V-A}^{(0+1)}$
- Spectral functions, $\rho_{V/A}^{(J)}(s)$:
 - * $\rho_{V\!/\!A}^{(1)}(s)$, π pole term of $\rho_A^{(0)}$ both $O(m_{u,d}^0)$
 - * Remainder of $\rho_A^{(0)}(s)$: $O[(m_d + m_u)^2]$
 - * $\rho_V^{(0)}(s) \equiv 0$ for $m_u = m_d$ simulations

Lattice data c.f. continuum $\Pi_{V-A}^{(0+1)}(Q^2)$

"Continuum" vs π -pole-corrected, $m_{\pi} = 289, 345, 394 \text{ MeV}$

The ChPT LECs ℓ_5^r , L_{10}^r

- Previous analyses
 - * 1-loop ChPT fits to $Q^2 \Pi_{V-A}^{(1)}(Q^2)$
 - * JLQCD PRL 101 (2008) 242001: $16^3 \times 32$, $n_f = 2$, overlap, 1/a = 1.67 GeV, $L \sim 1.9$ fm, $m_{\ell} \sim \frac{m_s}{6} \rightarrow \frac{m_s}{2}$
 - * RBC/UKQCD PR D81 (2010) 014504: $32^3 \times 64 \times 16_5$, $n_f = 2+1$, DWF, 1/a = 2.33 GeV, $L \sim 2.7$ fm, $m_\ell \sim \frac{m_s}{6} \rightarrow \frac{m_s}{3}$
 - * fits for both limited to single lowest Q^2 [JLQCD: $\sim (320 \ MeV)^2$, RBC/UKQCD: $\sim (230 \ MeV)^2$]

- Ingredients of the current update
 - * More RBC/UKQCD data:
 - $m_{\pi} = 171, 244$ MeV Iwaskai+DSDR $32^3 \times 64 \times 32_5, n_f = 2+1, 1/a = 1.37$ GeV, $L \sim 4.6 \ fm$ [See RBC/UKQCD talks for details, e.g. R. Mawhinney, TH 2:30]
 - \circ Doubled statistics for $m_\pi \sim 290$ MeV
 - Larger $L \Rightarrow$ more low- Q^2 points
 - * Analyze $\Pi_{V-A}^{(0+1)}(Q^2)$ rather than $\Pi_{V-A}^{(1)}(Q^2)$
- Here: 1-loop ChPT fit results (2-loop soon)

- Why $\Pi_{V-A}^{(0+1)}$ rather than $\Pi_{V-A}^{(1)}(Q^2)$?
 - * ChPT for $Q^2 \Pi_{V-A}^{(1)}(Q^2)$ at 1-loop

$$Q^{2} \Pi_{V-A}^{(1)}(Q^{2}) = -2 \left(f_{\pi}^{1-loop} \right)^{2} + Q^{2} \left[\frac{1}{24\pi^{2}} \left(\overline{\ell}_{5} - \frac{1}{3} \right) + B_{\pi\pi}(Q^{2}) \right]$$

with $B_{\pi\pi}(Q^2)$ known (fixed by m_{π})

* First term is kinematic pole contribution

• Why $\Pi_{V-A}^{(0+1)}$ rather than $\Pi_{V-A}^{(1)}(Q^2)$?

* ChPT for $Q^2 \Pi_{V-A}^{(1)}(Q^2)$ at 1-loop

$$Q^{2} \Pi_{V-A}^{(1)}(Q^{2}) = -2 \left(f_{\pi}^{1-loop}\right)^{2} + Q^{2} \left[\frac{1}{24\pi^{2}} \left(\bar{\ell}_{5} - \frac{1}{3}\right) + B_{\pi\pi}(Q^{2})\right]$$

* ChPT for $Q^2 \Pi_{V-A}^{(1)}(Q^2)$ at 2-loops :

$$Q^{2} \Pi_{V-A}^{(1)}(Q^{2}) = \left[-2\left(f_{\pi}^{2-loop}\right)^{2} + O(p^{4})\right] + Q^{2} \left[\frac{1}{24\pi^{2}}\left(\bar{\ell}_{5} - \frac{1}{3}\right) + B_{\pi\pi}(Q^{2}) + \cdots\right]$$

- $\circ O(p^4)$ in first line: additional kinematic pole contributions at 4th order in chiral expansion
- •••: known 2-loop integral contributions, 1-loop contributions proportional to $O(p^2)$ LECs, contributions proportional to $O(p^4)$ LECs
- * \Rightarrow Potential systematic complication at the low Q^2 wanted for good convergence of truncated expansion (numerical enhancement of 2-loop kinematic pole contributions relative to $\overline{\ell}_5$ term of interest)
- * Nearness $Q^2 = 0$ kinematic pole \Rightarrow tighter cancellation (hence larger relative errors) in residual which determines LEC

* The alternate $Q^2 \prod_{V-A}^{(0+1)}(Q^2)$ case

o At 1-loop

$$Q^{2} \Pi_{V-A}^{(0+1)}(Q^{2}) = -\frac{2Q^{2} \left(f_{\pi}^{1-loop}\right)^{2}}{Q^{2} + m_{\pi}^{2}} + Q^{2} \left[\frac{1}{24\pi^{2}} \left(\bar{\ell}_{5} - \frac{1}{3}\right) + B_{\pi\pi}(Q^{2})\right]$$

• At 2-loops

$$Q^{2} \Pi_{V-A}^{(0+1)}(Q^{2}) = -\frac{2Q^{2} \left(f_{\pi}^{2-loop}\right)^{2}}{Q^{2} + m_{\pi}^{2}} + Q^{2} \left[\frac{1}{24\pi^{2}} \left(\bar{\ell}_{5} - \frac{1}{3}\right) + B_{\pi\pi}(Q^{2}) + \cdots\right]$$

 No kinematic pole ⇒ no potential relative enhancement of unconstrained 2-loop terms, reduced cancellation in residual

$\ell_5^r(m_{\rho})$ from $\Pi_{V-A}^{(0+1)}$ (fit for each m_{π} , Q^2 separately)

 $l_5^{r}(0.77 \text{ GeV}, \text{m})$ from 1-loop fits

LEC results

- Non-trivial shift in relation of ℓ_5^r and L_{10}^r between 1loop and 2-loop, so quote only 1-loop $\ell_5^r(m_\rho)$ at present
- Good consistency for all Q^2 shown, all but largest m_π
- For maximum safety use only m_{π} closest to physical $(m_{\pi} = 171 \text{ MeV}), Q^2 < 0.15 \text{ GeV}^2$ (acceptability of Q^2 range confirmed by continuum study)
- Compare to 1-loop analysis of continuum "data" (actually OPAL data + DV model for small spectral contributions above $s = m_{\tau}^2$ [see PR D85 (2012) 093015])
- Small corrections to shift $\ell_5^r(m_\rho, m_K^{sim})$ to $\ell_5^r(m_\rho, m_K^{phys})$

 Lattice result (c.f. result of same 1-loop analysis of OPAL+DV continuum "data")

> $\ell_5^r(m_\rho) = -0.0037 \pm 0.0004 \ (lattice)$ $\ell_5^r(m_\rho) = -0.0035 \pm 0.0001 \ (continuum)$

• Comment: continuum error includes contribution from fitted DV model parameter uncertainties; however, DV contributions small, and even expanding the DV error to 100% expands continuum error only to ± 0.0002

Constraints on the π' and π'' Decay Constants

• Basic idea

*
$$P(Q^2) \equiv Q^2 \Pi_{V-A}^{(0)}(Q^2) = -Q^2 \Pi_A^{(0)}(Q^2)$$
 satisfies
the once-subtracted dispersion relation

$$P(Q^{2}) = P(Q_{0}^{2}) + (Q^{2} - Q_{0}^{2}) \int_{0}^{\infty} ds \frac{s \rho_{V-A}^{(0)}(s)}{(s + Q^{2})(s + Q_{0}^{2})}$$
$$= P(Q_{0}^{2}) - \frac{(Q^{2} - Q_{0}^{2}) 2f_{\pi}^{2}m_{\pi}^{2}}{(s + Q^{2})(s + Q_{0}^{2})}$$
$$- (Q^{2} - Q_{0}^{2}) \int_{9m_{\pi}^{2}}^{\infty} ds \frac{s \rho_{A}^{(0)}(s)}{(s + Q^{2})(s + Q_{0}^{2})}$$

* Rearranged form providing constraints on chirally suppressed continuum spectral contributions (hence on excited PS state decay constants) in terms of quantities measurable on the lattice:

$$P(Q^{2}) - P(Q_{0}^{2}) + \frac{(Q^{2} - Q_{0}^{2}) 2f_{\pi}^{2}m_{\pi}^{2}}{(s + Q^{2})(s + Q_{0}^{2})} = -(Q^{2} - Q_{0}^{2})\int_{9m_{\pi}^{2}}^{\infty} ds \frac{s \rho_{A}^{(0)}(s)}{(s + Q^{2})(s + Q_{0}^{2})}$$

- * Spectral positivity \Rightarrow constraints on individual excited PS resonance contributions
- * Linearity of excited state f_P with $m_u + m_d$ allows scaling of constraint bounds to physical m_q

• Analysis strategy

* NWA for
$$\pi'$$
, π''

$$\rho_A^{(0);cont}(s) = 2f_{\pi'}^2 \delta(s - m_{\pi'}^2) + 2f_{\pi''}^2 \delta(s - m_{\pi''}^2) + \cdots$$

- * Excited state masses \simeq physical masses (since $O(m_{\ell}^{0})$ to LO in the chiral expansion)
- * Spectral positivity, LHS of rearranged dispersion relation \Rightarrow upper bound for sum of π' , π'' contributions for each Q^2 , Q_0^2 pair
- * Each such bound linear in the $f_{\pi'}^2$, $f_{\pi''}^2$ plane

- * Final combined constraint = inner envelope of the collection of the constraint lines from the full set of Q^2 , Q_0^2 pairs
- * Q_0^2 small (to improve spectral integral convergence), not too small (to avoid large low- Q_0^2 lattice errors)
- * $Q^2 < 3.8 \ GeV^2$ (to avoid lattice artefacts)
- * Need am_q large enough to see signal in lattice data
- * $am_q = 0.004 \ (m_\pi \sim 289 \text{ MeV})$ (now with increased statistics) the Goldilocks am_q in this case

$am_q = 0.004$ constraints scaled down to physical m_q

SUMMARY

- Successful 1-loop determination $\ell_5^r(m_\rho) = -0.0037(4)$
 - * Excellent agreement with same (mildly model-dependent)
 1-loop analysis of continuum data
 - * 2-loop analysis in progress
 - * Other $(O(p^6))$ LECs likely to be determinable in the 2-loop analysis (precision?)

- Non-trivial constraint obtained on $\pi',\ \pi''$ decay constants
 - * NOTE: These enter the most reliable sum rule determinations of $m_u + m_d$ (via FESR, BSR analyses of the $\partial_{\mu}A^{\mu}$ 2-point function)
 - * Resulting f'_{π} , f''_{π} constraints compatible with existing SR results [PR D65 (2002) 074013]
 - * Constraint could be fed into SR analysis to produce upper bounds on $m_u + m_d$ (c.f. the lower bounds obtained by including only the known π pole contribution on the spectral integral side)