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Introduction

Introduction

@ nuclear physics: much empirical modeling, not based on
fundamental principles = put on “solid ground” of QCD

@ interesting questions: understanding multi-nucleon systems
(binding energies, scattering phases, etc.)

@ however: direct computation of multi-nucleon scattering
complicated (large number of contractions, finite chemical
potential, etc.)

@ potential method aims at circumventing these problems

@ this talk: test and compare this method to the Liischer
method in case of less
complicated /=2 wm-scattering problem

N
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Basics

Ingredients

@ compute two- and single-pion correlators:

Con(t,r,P)=>_ e ('t (t,(R+1)/2)7" (t,(R—1)/2)J,-(0,P)J,- (0,P)),

R

Co(t,P) =) e ™ (x*(t,R) .- (0,P))

R
@ J .- are Gaussian or wall sources with momenta P

@ applying Dirichlet boundary conditions, i.e.

P(t*,x) = 1(t*,x) = 0 or anti-periodic boundary conditions

@ sources are gauge dependent = fixing to Coulomb gauge



Basics

Contractions

t to t to

@ contractions necessary for computing Cr-(t,r)

@ no disconnected contributions in /=2 channel



Potential method

Time dependent potential method |

@ Nambu-Bethe-Salpeter (NBS) wave-function with asymptotic
momentum k given by

Y(r) = D0l () (x + 1)~ (k)w~ (—k))

X
e NBS-WEF satisfies Schroedinger-equation (note: E<Ey,)
(K + V?) Yx(r) = my / a3 U(r, v') e (r)
R3
and the asymptotic behavior

IF=r—00 (k) sin (kr + 6(k)) N

vi(r) kr



Potential method

Time dependent potential method I

@ define
R(t,r) = Crr(t,r, O)/Cﬁ(t,O)

@ inserting complete set of states yields

Zwk a e 1AELK
where AE(k) = 2v/k?> + m2 — 2m; and

a = (r~ (k)7 (—k)[Jx-(0,0) - (0,0)[0)
o use AE(k) = k?/m, — AE?(k)/4m, to write

2 2

my 4dm,
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Potential method

Time dependent potential method Il

o this yields

S
4m, Ot2 Ot m,

) R(t,r) = / &Br U(r, ¥ )R(t, 1)

R3

@ expand non-local potential for /=2 case:
U(r,r'y = Ve(r)(r—r)
@ this allows us to compute LO potential V¢:

_ V2R(t,r)  (3/0t)R(t,r) N 1 (0/0t)?R(t,r)

Vel = o R@tn) R(t,r) am.  R(t,r)




Potential method

Time dependent potential method IV

compute R(t, r) on the lattice

compute LO potential V¢(r)

model potential using suitable fits

solve SE for arbitrary k (ext. parameter) and obtain 1x(r)
compute scattering phases using 8 = [rdIny/dr],—r

_ kR jy(kR) — Bjo(kR)
tand(k) = 1% nZ(kR) ~ 5 no(kR)

where jo(p) = sinp/p and no(p) = — cos p/p.
compute scattering length a!=2 by fitting d(k) to ERE:

2 2\ 2
KA () sptm (5
m

my mpal=2 " 2 2 m2



Potential method

Results time dependent potential method

@ test method on quenched setup using M, ~ (700 — 940) MeV
with 2 HEX smeared tree-level improved clover-Wilson quarks
@ a~0.115fm and L~3.7 fm

statistical error from 2000 bootstrap samples
@ systematic uncertainties:
e rotational invariance breaking = perform analysis using data
along axis, surface-diagonals and space diagonals
o source dependence = use wall and gauss sources (r=0.3 fm)
e ground state saturation (energy dependence) = use different
time-slices
e potential modeling = use different potential models
(empirical), additionally apply cutoffs on largest available
distance r
e asymptotic region of v, = different distances R
@ estimate systematic error using histogram method (exception:
sources handled separately)



Potential method

Potentials |
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@ largest systematic uncertainty stems from breaking of
rotational invariance 10/18



Potential method

Potentials |l
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@ no dependence on time-slice (for t=21.45 fm)
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Potential method

Potentials [11-A
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@ which one is the correct pleteau?
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Potential method

Potentials |11-B
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@ noise weakened in potential method
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Potential method

Phases |

Potential
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@ phase dependence on Ecy for wall source
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Potential method

Phases IlI
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@ phase dependence on Ecy for both source types in comparison
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Phases IV

@ phase dependence on Ecy for both source types in comparison

Potential method
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Potential method

Phases V
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@ mass dependence of d(k)
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Potential method

Scattering lengths

M, =940 MeV, #confs=350
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@ comparison of scattering lengths
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Summary

Summary

@ compared time-dependent potential method to Liischer
method for treating QCD scattering problems

@ both methods allow for extracting scattering phases and
lengths

@ Liischer method: higher momenta (than ground-state
momenta) have to be computed by fitting excited states,
using initially boosted pions, etc.

@ potential method: relative momentum is free parameter

@ both methods yield compatible results for ground-state
energies

o excited states need still to be computed = improve check for
energy dependence of potential

@ challenge in case of nucleons: ground-state saturation (relaxed
by time-dependent potential-method)
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Scattering lengths
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@ immediate recognition of contribution of states above some
threshold .
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