WtmLQCD	η,η' on the lattice	Results	Sum
000	00	0000000	0

Properties of Pseudoscalar Flavor-Singlet Mesons from 2+1+1 Twisted Mass Lattice QCD

K. Ottnad^a, C. Urbach^a, C. Michael^b

for ETM Collaboration

- ^a Helmholtz Institut f
 ür Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universit
 ät Bonn
- ^b Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool

LATTICE Conference on June 28, 2012

Bonn Cologne Graduate School of Physics and Astronomy

Outline	WtmLQCD	η,η' on the lattice 00	Results	Summary
•	000		00000000	O
Outline				

- Want to calculate properties of η, η'-mesons using 2+1+1 dynamic quark flavours
- This allows to determine masses of η, η' (in principle also for η_c)
- Study quark mass dependence
- Perform scaling test to estimate systematic errors
- Extract flavour contents of the states
- Check for possible *c*-quark contribution to η , η'
- Determine mixing angle

2+1 flavour results available so far:

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	•00	00	0000000	0

Wilson tmLQCD for light quarks (1)

Consider the QCD action

$$S_{QCD} = \int d^4 x \left(-\frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu} + \sum_f \bar{\psi}_f \left(i \not{D} - \mathcal{M}_f \right) \psi_f \right) = S_G \left[G \right] + S_F \left[G, \psi, \bar{\psi} \right]$$

with four quark flavours, i.e. one light $\psi_l = (u, d)$ and one heavy doublet $\psi_h(c, s)$. The Wilson twisted mass lattice action for the light doublet reads

$$S_{F,I}[U, \chi_I, \bar{\chi}_I] = a^4 \sum_{\chi} \bar{\chi}_I \left(D_W + m_0 + i \mu_I \gamma_5 \tau^3 \right) \chi_I \qquad \text{Frezzotti et. al., JHEP 0108:058 (2001)}$$

 D_W : Wilson operator, m_0 : bare untwisted quark mass, μ_I : bare twisted quark mass S_F is related to the physical basis (in the continuum only!) via

$$\psi = \exp\left(i\omega\gamma_5\tau^3/2
ight)\chi$$
 and $\bar{\psi} = \bar{\chi}\exp\left(i\omega\gamma_5\tau^3/2
ight)$.

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	0000000	0

Wilson tmLQCD for light quarks (2)

- Wilson and tmWilson basis are different lattice regularizations
- ${\ensuremath{\bullet}}$ "twist-rotation" is NOT a symmetry on the lattice \rightarrow different lattice artefacts compared to Wilson formulation

 \rightarrow Can be used to cancel $\mathcal{O}(a)$ -effects

• It can be shown that at maximum twist $\omega = \frac{\pi}{2}$, one has:

$$\left\langle O^{cont}\left[\psi,\bar{\psi}\right]\right\rangle = \left\langle O^{tm}\left[\chi,\bar{\chi}\right]\right\rangle + \mathcal{O}\left(a^{2}\right)$$

i.e. we have automatic $\mathcal{O}(a)$ improvement

R. Frezzotti and G. C. Rossi, Nucl. Phys. B 129&130, 880-882 (2004)

- No tuning of further, operator-specific improvement coefficients
- Flavor symmetry and parity are broken at finite *a* (but $\mathcal{O}(a^2)$ -effect)
- Light sector is flavour-diagonal

Outline	WtmLQCD	η, η' on the lattice	Results	Summary
0	00•	00	0000000	0

Heavy quark sector

The action for the heavy doublet reads

$$\mathcal{S}_{F,h}[U,\chi_h,\bar{\chi}_h] = a^4 \sum_{\chi} \bar{\chi_h} \left(D_W + m_0 + i\mu_\sigma \gamma_5 \tau^1 + \mu_\delta \tau^3 \right) \chi_h \; .$$

R. Frezzotti and G.C. Rossi, Nucl. Phys. Proc. Suppl.128 193-202 (2004)

 m_0 : bare untwisted quark mass, μ_{σ} : bare twisted mass, μ_{δ} : c,s-mass splitting

strange and charm quark masses are given by

$$m_{c,s} = \mu_{\sigma} \pm \frac{Z_P}{Z_S} \mu_{\delta}$$

- Again automatic $\mathcal{O}(a)$ improvement is achieved
- Heavy sector is NOT flavour-diagonal \rightarrow two additional progagators G_{cs}^{xy} G_{sc}^{xy}
- \Rightarrow Heavy sector requires a much larger number of contractions for correlation functions

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	•0	0000000	0

Interpolating operators for η , η'

In the physical basis 2 γ -combinations ($i\gamma_5$, $i\gamma_0\gamma_5$) available; consider only $i\gamma_5$:

$$\eta_l^{phys} = \frac{1}{\sqrt{2}} \bar{\psi}_l i \gamma_5 \psi_l \quad \eta_{c,s}^{phys} = \bar{\psi}_h \left(\frac{1 \pm \tau^3}{2} i \gamma_5 \right) \psi_h = \begin{cases} \bar{c} i \gamma_5 c \\ \bar{s} i \gamma_5 s \end{cases}$$

At maximal twist this reads in the twisted basis:

$$\eta_l^{tm} = \frac{1}{\sqrt{2}} \bar{\chi}_l \left(-\tau^3\right) \chi_l \quad \eta_{c,s}^{tm} = \frac{1}{2} \bar{\chi}_h \left(-\tau^1 \pm i \gamma_5 \tau^3\right) \chi_h$$

 \Rightarrow heavy operators are a sum of scalars and pseudoscalars!

Considering renormalization we have

$$\begin{split} \eta_{c,renormalized}^{tm} &= Z_P\left(\bar{\chi}_c i\gamma_5\chi_c - \bar{\chi}_s i\gamma_5\chi_s\right) - Z_S\left(\bar{\chi}_s\chi_c + \bar{\chi}_c\chi_s\right) \\ \eta_{s,renormalized}^{tm} &= Z_P\left(\bar{\chi}_s i\gamma_5\chi_s - \bar{\chi}_c i\gamma_5\chi_c\right) - Z_S\left(\bar{\chi}_s\chi_c + \bar{\chi}_c\chi_s\right) \ . \end{split}$$

 \rightarrow Need $\frac{Z_P}{Z_S}$; how can we avoid this when calculating masses?

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	0	0000000	0

Correlation function matrix for η , η'

Choose different set of "heavy" operators

$$\eta_{S,P} = \eta_c^{tm} \pm \eta_s^{tm} = \begin{cases} \frac{1}{\sqrt{2}} (\bar{\chi}_c \chi_s + \bar{\chi}_s \chi_c) \\ \frac{1}{\sqrt{2}} (\bar{\chi}_c i \gamma_5 \chi_c - \bar{\chi}_s i \gamma_5 \chi_s) \end{cases}$$

 \Rightarrow This corresponds to an additional rotation of the basis.

In the twisted basis we have to calculate this correlation matrix:

$$\mathcal{C}^{\eta}(t) = \begin{pmatrix} \eta_{l}(t)\eta_{l}(0) & \eta_{l}(t)\eta_{S}(0) & \eta_{l}(t)\eta_{P}(0) \\ \eta_{S}(t)\eta_{l}(0) & \eta_{S}(t)\eta_{S}(0) & \eta_{S}(t)\eta_{P}(0) \\ \eta_{P}(t)\eta_{l}(0) & \eta_{P}(t)\eta_{S}(0) & \eta_{P}(t)\eta_{P}(0) \end{pmatrix}$$

- Eigenvectors of $C^{\eta}(t)$ give access to flavour contents
- Eigenvalues allow to extract masses for η and η'

Outline WtmL0	QCD η, η' or	n the lattice Resul	ts Summary
000	00	000	00000 0

Setup

We used the following setup:

 Gauge configurations were provided by ETM Collaboration; we use 15 ensembles

R. Baron et. al., JHEP 06 111 (2010)

- Computations are done on the JUGENE and JUDGE systems at Jülich and our GPU-Cluster
- Three lattice spacings $a_A = 0.086 \text{ fm}$, $a_B = 0.078 \text{ fm}$ and $a_D = 0.061 \text{ fm}$
- Physical lattice size $L \ge 3 \text{ fm}$ for many ensembles
- ${\small O}$ We use $\approx 600~{\rm up}$ to ≈ 2500 gauge configuration per ensemble
- Charged pion masses range from $\approx 230\,\text{MeV}$ to $\approx 500\,\text{MeV}$
- μ_{σ} , μ_{δ} fixed for each β

Identifying the states

Flavor contents for η (left) and η' (right) from B25.32 ensemble, 3x3-matrix, local-correlators only

- Groundstate (η) has large strange contribution \rightarrow expected from quark model
- Second state (η') is dominated by light quark contributions
- No charm contribution to any of the two states
- Third state (not shown) contains almost only charm

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	000000	0

Masses for η , η'

- M_{η} has rather small statistical error, mostly $\leq 5\%$
- M_{η} shows moderate m_l -dependence
- M_{η} not at physical point yet $\rightarrow m_S$ -dependence
- η' even with 2500 gauges still hard to extract; shows large autocorrelation
- Need to study systematic errors especially for $M_{\eta'}$

<ロ> < 母 > < 母 > < 臣 > < 臣 > 三 三 の < で

10/21

 m_S -dependence of M_K , M_η

 M_{K} (left) and M_{η} (right) for A-Ensembles as function of M_{PS}^{2}

- In both cases the untuned points miss the physical value
- Blue points have different strange mass
- Dependence on m_s sizeable for K and η
- Bare m_s is fixed for each lattice spacing (but $m_{s,A} \neq m_{s,B} \neq m_{s,D}$)
- Perform linear fit $g_{\mathcal{K}}[(r_0 M_{\text{PS}})^2]$ and shift to hit physical point $(\tilde{g_{\mathcal{K}}})$
- \implies Shift M_K for all ensembles by $\delta_K[(r_0 M_{PS})^2] = (r_0 M_K)^2[(r_0 M_{PS})^2] \tilde{g}_K[(r_0 M_{PS})^2]$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

11/21

Outline	WtmLQCD	η,η' on the lattice 00	Results	Summary
o	000		○○○○●○○○	O

Correction for m_s

- Two different kaon masses M_{K}^{A} , $M_{K,s}^{A}$ for the A-Ensembles at $\mu_{l} = 0.008$ and $\mu_{l} = 0.010$
- Use them to estimate $D_{\eta} = \frac{d(aM_{\eta})^2}{d(aM_{K})^2}$
- Neglect possible M_{PS} , β -dependence
- Extrapolate all ensembles via

 $(r_0 \overline{M}_{\eta})^2 [(r_0 M_{\rm PS})^2] = (r_0 M_{\eta})^2 + D_{\eta} \cdot \delta_{\rm K} [(r_0 M_{\rm PS})^2]$

Fitting $(r_0 \overline{M}_{\eta})^2 [(r_0 M_{PS})^2]$ we find

 $M_{\eta}(M_{\pi}) = 549(33)_{\text{stat}}(44)_{\text{sys}} \text{MeV}$

with $r_{0,phys} = 0.45(2) \, \text{fm}$ R. Baron et. al. PoS LATT2010, 123

<ロト < 団ト < 臣ト < 臣ト < 臣 > ○へで 12/21

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	00000000	0

Scaling behavior

• Use 3 points at different *a* and shift to fixed $r_0 \bar{M}_K \approx 1.34$ via

$$(r_0 \overline{M}_\eta)^2 = (r_0 M_\eta)^2 + D_\eta \cdot \Delta_K$$

- Points have almost similar $r_0 M_{PS} \approx 0.9$
- Residual M_{PS}-dependence neglected
- $\Delta M = M_{\text{lin}} M_{\text{const}} = 0.13(13)_{\text{stat}}$
- \rightarrow data compatible with constant fit!
- \rightarrow rather small lattice artefacts

However, we assume $\Delta M/M_{\rm const} \approx 8\%$ for our systematic error.

For additional cross-check of our result for M_{η} , we study mass ratios:

•
$$M_{\eta}/M_{K} = 1.121(26)$$
 (exp value ≈ 1.100) gives $M_{\eta} = 558(13)_{\text{stat}}(45)_{\text{sys}}\text{MeV}$
• $\frac{3M_{\eta}^{2}}{4M_{K}^{2}-M_{\pi}^{2}} = 0.966(48)$ (exp value ≈ 0.925) gives $M_{\eta} = 559(14)_{\text{stat}}(45)_{\text{sys}}\text{MeV}$

 \Rightarrow Results from all three methods agree, combined fit gives $M_{\eta} = 557(15)_{\text{stat}}(45)_{\text{sys}} \text{MeV}$

<ロト < @ ト < E ト < E ト の Q C 14/21

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
o	000	00	○○○○○○●	O
Mixing				

In the quark basis (neglecting charm)

$$|\eta_l
angle = rac{1}{2}(|uar{u}
angle + |dar{d}
angle)$$
, $|\eta_s
angle = |sar{s}
angle$

the η and η' are not pure states:

$$\begin{pmatrix} |\eta\rangle \\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \cdot \begin{pmatrix} |\eta_{\ell}\rangle \\ |\eta_{s}\rangle \end{pmatrix}$$

(single angle mixing scheme)

Expressed in amplitudes from matrix fit:

$$an^2(\phi) = -rac{A_{\ell\eta'}A_{s\eta}}{A_{\ell\eta}A_{s\eta'}}$$

From linear fit we obtain:

 $\phi = 44^{\circ}(5)_{\text{stat}}$

Mixing angle from 4×4 matrix using local amplitudes $A_{q,n}$

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	0000000	•

Summary and Outlook

- First calculation with 2+1+1 dynamical quark flavours
- Small lattice artefacts for η
- No charm contribution to η and η'
- $M_{\eta} = 557(15)_{\text{stat}}(45)_{\text{sys}} \text{MeV}$ in good agreement with $M_{\eta}^{\text{exp}} \approx 548 \text{MeV}$
- $M_{\eta'}$ strongly affected by noise and autocorrelation
- Mixing angle $\phi = 44^{\circ}(5)_{\text{stat}}$
- Need better variance reduction for heavy disc loops
- Study flavour singlet decay constants from (0| A_μ |η), (0| A_μ |η') (?)
- Additional scaling tests; vary m_s for more ensembles

<ロト < 母 ト < 臣 ト < 臣 ト 三 の < で 16/21

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	0000000	0

Flavor contents for third state

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	0000000	0

Mixing angles from 6×6 -matrix using fuzzed amplitudes

 18/21

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	0000000	0

Factorizing fit model

$$C_{qq'}(t) = \sum_{n} \frac{A_{q,n}A_{q',n}}{2m^{(n)}} \left[\exp(-m^{(n)}t) + \exp(-m^{(n)}(T-t)) \right]$$

< □ ▷ < 큔 ▷ < 토 ▷ < 토 ▷ 토 · ♡ < ♡ 19/21

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	0000000	0

Generalized eigenvalue problem

Use of n operators allows to extract n excited states:

$$C_{ij}^{\eta}(t) \simeq \sum_{k=1}^{n} \phi_{i}^{(k)} \exp(-E_{k}t) \left(\phi_{j}^{(k)}\right)^{*}, \quad \phi_{i}^{(k)} = \langle 0|\eta_{i}|k \rangle .$$

For $\eta_i = \eta_i^{\dagger}$, $C_{ij}^{\eta} = \left(C_{ij}^{\eta}\right)^{\dagger}$ one has to solve a generalized eigenvalue problem:

$$C^{\eta}(t)\phi^{(k)}(t,t_0) = \lambda^{(k)}(t,t_0) C^{\eta}(t_0)\phi^{(k)}(t,t_0)$$
,

where $\phi^{(k)}$ is the eigenvector corresponding to *k*-th state.

Masses are obtained from

$$\frac{\lambda_k(t, t_0)}{\lambda_k(t+1, t_0)} = \frac{\exp\left(-m^{(k)}t'\right) - \exp\left(-m^{(k)}(T-t')\right)}{\exp\left(-m^{(k)}(t'+1)\right) - \exp\left(-m^{(k)}(T-(t'+1))\right)}$$

Flavor contents of the states are given by

$$c_{l}^{(k)} = \frac{1}{N} \left(\phi_{1}^{(k)} \right)^{2} , \quad c_{s}^{(k)} = \frac{1}{N} \left(\phi_{2}^{(k)} \right)^{2} , \quad c_{c}^{(k)} = \frac{1}{N} \left(\phi_{3}^{(k)} \right)^{2}$$

with N s.t. $c_l^{(k)} + c_s^{(k)} + c_c^{(k)} = 1$.

<□ ▷ < 급 ▷ < Ξ ▷ < Ξ ▷ Ξ · 의 < ○ 20/21</p>

Outline	WtmLQCD	η,η' on the lattice	Results	Summary
0	000	00	0000000	0

Variance reduction

Typical matrix element C_{η}^{ij} consists of connected and disconnected pieces:

Disconnected diagrams have large intrinsic noise \rightarrow use stochastic sources ξ :

$$\phi = M^{-1}\xi$$
, $M_u = 2\kappa \mathrm{tr}\left[a D_{tmW}\left(1+ au^3\right)/2
ight]$

In WtmLQCD there is a very efficient way to evaluate loops with light quarks:

Use $(M_d - M_u) = 4i\kappa a\mu_l\gamma_5$ and $M_u^{\dagger} = \gamma_5 M_d\gamma_5$ to obtain

$$\sum_{s,c,x} X \left(M_u^{-1} - M_d^{-1} \right) = 4i\kappa a \mu_I \sum_{s,c,x} X \left(M_u^{-1} \right)^{\dagger} M_u^{-1} \gamma_5$$
$$= 4i\kappa a \mu_I \sum_{x,x} \{ \phi^* \gamma_5 X \phi \}_{n \text{ samples}} + \text{noise}$$

- Signal / noise ratio of $\sim V/\sqrt{V^2} = 1^{s,c,x}$ compared to $\sim 1/\sqrt{V}$
- Restricted to certain loops
- Cannot be applied in the heavy sector due to the additional mass splitting

K. Jansen et. al., Eur. Phys. J C58 261-269 (2008)

・ロト ・母 ト ・ヨト ・ヨト ・ヨー わえで