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Introduction
In the unitary setup we had calculated the η- and η′-masses for various Ensemble
from the ETM Collaboration...
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Ensembles with adjusted strange quark
mass show dependence of η

& further ensembles are costly.

We are looking for an analysis method...

1 of improved variance reduction
2 and an option to vary the strange quark mass µs

This can be achieved by changing the valence quark regularisation!
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The mixed action approach

Idea: Use different regularisation in the sea and valence quark sector

q q
sea

The sea quarks:
obey the standard wTm action for 2+1+1 dynamical quark flavours
which was used to generate the configurations:

The valence quark action:

will be replaced by the Osterwalder-Seiler action ...
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And in the valence quark sector ...

We replace the wtm action by the Osterwalder-Seiler action:

SOS [F , qf , q̄f ] = a4
∑

x

q̄f (x)

[
1

2
(Dw (rf ) +mcr (rf ) + iγ5µf

]

qf (x) ,

R. Frezzotti and G. C. Rossi, JHEP 08, 007 (2004), hep-lat/0306014

Features
Freedom to introduce an arbitrary number of valence quark flavours

qf = s, s ′, s ′′, ..., c , c ′, c ′′, ...

with an individual value of the quark mass µf !

... and individual sign, too. // Will be of later use!

No flavour mixing for light flavours as well as for heavy quarks

The bare quark mass is the only parameter to be tuned: m0 → mcr

But: value known from pure tm + we preserve O(a) improvement

R. Frezzotti and G. C. Rossi, JHEP 10, 070 (2004), hep-lat/0407002
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Correlation Matrix

The η/η′ states can be extracted by means of the axial and pseudoscalar
interpolating operators.

→ 3 pseudoscalars: ηl := q̄l iγ5ql , ηs := q̄s iγ5qs , ηc := q̄c iγ5qc ,

Correlators Cij(t) =< 0|ηi (0)ηj(t)|0 > consist of connected and disconnected

diagrams :

t 0 t 0+

⇔ Cij(t) = cij(t) + dij(t) , cij = 0 ∀i 6= j ∈ {l , s, c}

Disconnected pieces are of special importance: responsible for the

large η′-mass compared to the rest of the octet mesons.

This believed to be caused by the anomalous broken U(1)A-symmetry.
G. ’t Hooft, PRL 37, 8 (1976)
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Matching of the Valence quark masses (1)
The valence quark masses in the Osterwalder-Seiler setup are free

parameters & can be used to match sea and valence quark regularisation.

⇒ We must tune the the strange valence quark mass µs .

(The light quark mass is fixed by the unitary value)

Therefore: need of observables to match the unitary and OS setup

Option: Kaons are the lightest meson with strange quark content
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mOS
ss̄-connected = m
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Variance reduction
Form pure tm we know a powerful tool - the so-called ”VV-method” - to reduce
the noise arising from disconnected loops in the light quark sector.

K. Jansen et. al., Eur. Phys. J C58 261-269 (2008)

The loop [ūu− d̄d ](t) can be evaluated directly: (Note: the − sign arises from tm!)

1

Dd
− 1

Du
= 2iµl

1

Dd
γ5

1

Du

Very effective: signal/noise ≈
√
V instead of 1
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Dinter, Simon et al. arXiv:1202.1480 [hep-lat]
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Variance reduction

How can we apply the ”VV-method” to heavy quark flavours, too ?

Trick:
1 Rewrite:

ss̄ = 1
2 (ss̄ + ss̄)

2 Use freedom of Osterwalder to introduce ”new” valence flavour s’...
= 1

2 (ss̄ − s ′s̄ ′)

3 Rotate s & s’ in the twisted basis:

⇒ This is the same situation as in the light sector.

In the Osterwalder-Seiler framework the VV-method can by applied to all
disconnected loops.
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Results: Ensemble characteristics

We will consider 2 ensembles provided by the ETM collaboration:

R. Baron et. al., JHEP 06 111 (2010)
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Results: Ensemble characteristics

We will consider 2 ensembles provided by the ETM collaboration:

B85.24 configurations

◮ a ≈ 0.078fm

◮ V /a4 = 243x48

◮ mPS± ≈ 490MeV

Smaller lattice spacing: D45.32sc

◮ a ≈ 0.061fm

◮ V /a4 = 323x64

◮ mPS± ≈ 390MeV

R. Baron et. al., JHEP 06 111 (2010)
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Matching of the Valence quark masses (2)

The mass of the chosen ss̄-connected meson in the OS framework as a

function of the strange quark mass
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Matching of the Valence quark masses (2)

The mass of the chosen ss̄-connected meson in the OS framework as a

function of the strange quark mass

linear fit
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Generalised eigenvalue problem

Masses extracted via GEVP application from the 3x3 local correlation

matrix:
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We observe 2 separated states corresponding to η/η′ → ms̄s is an
appropriated quantity to determine µs

η: ground state can be extracted very well!

η′: still just a few points → fit becomes difficulties

(ηc : charm dominated state without much disconnected contributions)
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Strange quark mass dependence (1)

How does the η/η′-mass evolves as a function of the µs mass?
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Horizontal line corresponds to the unitary result of the η/η′-mass

Vertical line marks µs matching via the neutral Kaon

The most left point corresponds to ms̄s matching

Separation of states becomes more difficult for larger values of µs
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Strange quark mass dependence (2)

How does the η/η′-mass evolves as a function of the µs mass?
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⇒ best agreement for ms̄s matching & mη exceeds the unitary value at larger µs

η
′-state

Again: good agreement at ms̄s matching

mη drops below the unitary range at larger µs
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Summary

The Osterwalder-Seiler mixed action is a promising tool to...

Investigate the dependence of mη on s,c-quark masses

Reduce the noise in the heavy quark flavour sector

We have tested the setup successfully to reproduce the η-masses from the unitary
framework.

⇒ For pseudoscalar flavour singlet quantities the sea loops have
significant impact, but evaluation with proper matching is possible.

TODO:

Increase the statistic of disconnected loops

Explore further ensembles to asses systematic errors and

Extrapolate to physical light quark mass.
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The Osterwalder-Seiler setup
Idea: Use different regularization in the valence and sea quark sector

S = SG [F ] + i
∑

q∈{l,h}

Swtm[F , χq, χ̄q]

︸ ︷︷ ︸

sea quarks χq

+
∑

f

[SOS [F , qf , q̄f ] + SGhost [F ,Φf ]]

︸ ︷︷ ︸

valence quarks qf

We have the Osterwalder-Seiler action for valence quarks

SOS [F , qf , q̄f ] = a4
∑

x

q̄f (x)

[
1

2
(∇µ +∇∗

µ
)−Wcr (rf ) + iγ5µf

]

qf (x)

with Wcr (rf ) = −a rf
2

∑

µ
∇∗

µ
∇µ +mcr (rf ) and valence quark mass µf

Assign a ghost field Φf (euclidean commuting spinor) to each qf with the singel
purpose of canceling the corresponding valence determinant. The ghost action
reads:

Sgh[F ,Φf ] = a4
∑

x

Φ†
f sign(µf )

[
1

2
(∇µ +∇∗

µ
)− iγ5Wcr (rf ) + µf

]

Φf (x)

K. Osterwalder, E. Seiler, Ann. Phys. (NY) 110, 440 (1978)
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