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Motivation

Motivation

@ setting the scale should be cheap and precise in order to
achieve percent-level accuracy
@ common inputs
e, n (purely
gluonic, complicated analysis, noisy)
e Mq (fitting correlators, precise experimental input,
, inversions, noisy correlation function, problematic on
coarse lattices)
o fr, f (fitting correlators, ,
inversions, strong dependence on quark masses,
renormalization in case of Wilson quarks)

° mss, fs (fitting correlators,
independent of my, , renormalization
in case of Wilson quarks)

@ in this talk

° W (purely gluonic, uncomplicated

analysis, good accuracy, , )
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Introduction

@ wy-scale is based on Wilson flow

e individual configurations are infinitesimally smeared up to scale
t in flow-time ([t] = m?)

e smearing is performed until specific dimensionless observable
reaches specific value

e time ty at which that happens can be used to set the scale on
the original lattices

@ suitable observable is

(E(t)) = (G, G5")(t) /4
where G7, is the clover-leaf definition of the QCD field
strength tensor
o Luscher's idea: use

T(t) = t2(E(t)) ~ t
and ty defined by T(sp) = 0.3, tp = v/8sp
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@ ty scale in fm as determined by Mq
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o effect of integration: T(t) incorporates informations from all
scales > O(1/+/t) and thus also discretization effects from
around t~a? (constant of integration) = to-scale contains
non-universal part and therefore has larger discretization errors

@ our proposal:

d o
W(t) = t—[t*(E(t))]
dt
and define wy via

W(t)|,_,z = 0.3

|t.“:w0

@ wp depends on scales of O(1/4/t) = non-universal part
shrinks and wy has thus smaller discretization errors
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Symanzik vs. Wilson flow

@ infinitesimal smearing equivalent to solving flow-equation
Vi=Z(V)Ve, Vo=U

e Z(V4) is derivative of gauge action = allows to define
different flow-types (Symanzik, Wilson)

w, scale, Wilson flow —e— |[fm]
wy scale, Symanzik flow —a—
L té/z scale, Symanzik flow —e— | 02
1/2 . -
|| momorssisie mfo” seale, Wisonflow 8= | g g very insensitive to different
% 2 3 e ’ ..
L} 4= 0 1assieria) im 1 o6 flow definitions
e . lo1a @ however: only shuffling O(a?)
[ ] .
, continuum fimit = 1 012 corrections around
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Expressing wy in physical units

Kaon mass [MeV]

Results

@ wyg is intermediate scale and needs to be converted into
physical units

e use our 2HEX smeared tree-level clover improved Wllson
ensembles with 0.054 fm<a<0.093 fm, mg>mP™s and M,

even below its physical value

e cross-check on stout-link staggered ensemble

@ use Mg scale-setting to determine
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Results

Continuum limit

Staggered with 2 stout Wilson-clover with 2 HEX
]| —m— t}2 scale wy scale, Wilson flow —e— |[fm]
W, scale, Symanzik flow —a—
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@ result: wp=0.1755(18)(04) fm (Wilson)

@ all continuum limits agree, but slopes are different = wy
compensates discretization errors in Mg best

@ tp scale benefits from Symanzik definition of flow
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Continuum limit 1l

1.02 .
Wgymanak flow

\
| Wo
1.01 ! W\évilsonflow
0.99 | |
0.98 | |
| 1.0020(35)(30)
07 |-
\

0.96 |

0 0.05 0.1 0.15 0.2 0.25
a® [GeV'Z]

@ both flow types give the same result but have different O(a?)
@ Wilson flow is computationally cheaper



Results

Continuum limit 111

o statistical error: 2000 bootstrap
samples
@ systematic error:

i o 4 fit forms for wo(M,, Mk, a)

| e 2 pion mass cuts

i (M, < 300MeV,350MeV)

e 2 M -cuts in Mq-scale

. determination

(M, < 380MeV, 480 MeV)

REL] R I—T e 2 fit ranges for extracting
w,lfm] masses from correlators

e 2 scaling assumptions

@ tiny systematic uncertainty
e statistical uncertainty of wy[fm] is ~ 1% (dominated by aMq)
@ wp/a can be inexpensively determined up to very high

precision (per-mil level if necessary)
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Results

Finite volume effects
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@ absence of FV effects for lattices with L = 2 fm 11/14



Results

Mass dependence
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@ 10% change in mg translates into ~ 0.5% change in wy
@ O(10) spread in m,q translates into ~ 5% spread in wy
o detailed dependency in
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Results

Price tag

e single config, 1000 ODE steps (time in seconds)
machine \ BG/P rack \ 2 Fermi-GPUs \ core i7 (unoptimized) ‘

163 x 32 33.6 74.7 5583
243 x 48 - 257 9030
243 x 64 53.6 329 11758
323 x 96 384 1108 39460

o rule of thumb: 2/a%[fm?] steps
@ public CHROMA implementation

@ arXiv:1203.4469: wilson flow.c for generating and
wO_scale.c for analyzing the flow
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Conclusions

Conclusions

@ Summary
e proposed new scale-setting observable wy based on Wilson flow

e obtained wy = 0.1755(18)(04) fm in physical units from
2 HEX-smeared Wilson data including physical pion masses

e crosschecked with staggered

e mild quark mass dependence (can be corrected for) and very
weak volume dependence

@ Applications

e high-precision scale-setting

e in combination with QCDSF “mass splitting” strategy:
parameter tuning becomes much simpler

e suitable for anisotropic lattices:
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