High-precision scale setting in lattice QCD

Thorsten Kurth for the Budapest-Marseille-Wuppertal Collaboration

Lattice 2012, Cairns, June 25th 2012

Motivation

- setting the scale should be cheap and precise in order to achieve percent-level accuracy
- common inputs
 - r₀, r₁ [Sommer; Nucl.Phys.B411] [MILC; Phys.Rev. D62] (purely gluonic, complicated analysis, noisy)
 - M_{Ω} (fitting correlators, precise experimental input, sensitive to m_s , inversions, noisy correlation function, problematic on coarse lattices)
 - f_{π} , f_{K} (fitting correlators, precise experimental input, inversions, strong dependence on quark masses, renormalization in case of Wilson quarks)
 - $m_{s\bar{s}}$, $f_{s\bar{s}}$ [HPQCD, Phys.Rev. D81] (fitting correlators, independent of m_l , strong dependence on m_s , renormalization in case of Wilson quarks)
- in this talk
 - w₀ [BMW-c, arXiv:1203.4469] (purely gluonic, uncomplicated analysis, good accuracy, mod. expensive, large autocorrelation)

Results

Introduction

- *w*₀-scale is based on Wilson flow [Narayanan, Neuberger; JHEP 0603] [Lüscher; Commun.Math.Phys. 293, JHEP 1008]
 - individual configurations are infinitesimally smeared up to scale t in flow-time $([t] = m^2)$
 - smearing is performed until specific dimensionless observable reaches specific value
 - time t₀ at which that happens can be used to set the scale on the original lattices
- suitable observable is

$$\langle E(t) \rangle = (G^a_{\mu\nu}G^{\mu\nu}_a)(t)/4$$

where $G^a_{\mu\nu}$ is the clover-leaf definition of the QCD field strength tensor

Lüscher's idea: use

$$T(t) \equiv t^2 \langle E(t)
angle \sim t$$

and t_0 defined by $T(s_0) = 0.3, t_0 = \sqrt{8s_0}$

Introduction

Results

Conclusions

Introduction II

Introduction III

- effect of integration: T(t) incorporates informations from all scales $> \mathcal{O}(1/\sqrt{t})$ and thus also discretization effects from around $t \sim a^2$ (constant of integration) $\Rightarrow t_0$ -scale contains non-universal part and therefore has larger discretization errors
- our proposal:

$$W(t) \equiv t rac{\mathrm{d}}{\mathrm{d}t} ig[t^2 \langle E(t)
angle ig]$$

and define w_0 via

$$W(t)|_{t=w_0^2} = 0.3$$

• w_0 depends on scales of $\mathcal{O}(1/\sqrt{t}) \Rightarrow$ non-universal part shrinks and w_0 has thus smaller discretization errors

infinitesimal smearing equivalent to solving flow-equation

$$\dot{V}_t = Z(V_t)V_t, \quad V_0 = U$$

• $Z(V_t)$ is derivative of gauge action \Rightarrow allows to define different flow-types (Symanzik, Wilson)

- w₀ very insensitive to different flow definitions
- however: only shuffling $\mathcal{O}(a^2)$ corrections around

Expressing w_0 in physical units

- *w*₀ is intermediate scale and needs to be converted into physical units
 - use our 2 HEX smeared tree-level clover improved WIIson ensembles with 0.054 ${\rm fm}{<}a{<}0.093\,{\rm fm},~m_s{\simeq}m_s^{\rm phys}$ and M_π even below its physical value
 - cross-check on stout-link staggered ensemble
- use M_Ω scale-setting to determine $w_0[\mathrm{fm}]$

Continuum limit

- result: $w_0 = 0.1755(18)(04) \, \text{fm}$ (Wilson)
- all continuum limits agree, but slopes are different $\Rightarrow w_0$ compensates discretization errors in M_{Ω} best
- t_0 scale benefits from Symanzik definition of flow

Continuum limit II

- both flow types give the same result but have different $\mathcal{O}(a^2)$
- Wilson flow is computationally cheaper

Continuum limit III

- statistical error: 2000 bootstrap samples
- systematic error:
 - 4 fit forms for $w_0(M_{\pi}, M_K, a)$
 - 2 pion mass cuts $(M_{\pi} < 300 \,{
 m MeV}, 350 \,{
 m MeV})$
 - 2 M_{π} -cuts in M_{Ω} -scale determination
 - $(M_{\pi} < 380 \, {
 m MeV}, 480 \, {
 m MeV})$
 - 2 fit ranges for extracting masses from correlators
 - 2 scaling assumptions

- tiny systematic uncertainty
- statistical uncertainty of $w_0[{
 m fm}]$ is $\sim 1\%$ (dominated by aM_Ω)
- w_0/a can be inexpensively determined up to very high precision (per-mil level if necessary)

Finite volume effects

 $11 \, / \, 14$

Mass dependence

- 10% change in m_s translates into \sim 0.5% change in w_0
- $\mathcal{O}(10)$ spread in m_{ud} translates into $\sim 5\%$ spread in w_0
- detailed dependency in [BMW-c, arXiv:1203.4469]

• single config, 1000 ODE steps (time in seconds)

machine	BG/P rack	2 Fermi-GPUs	core i7 (unoptimized)
$16^3 \times 32$	33.6	74.7	5583
$24^3 \times 48$	-	257	9030
$24^3 \times 64$	53.6	329	11758
$32^{3} \times 96$	384	1108	39460

- rule of thumb: $2/a^2$ [fm²] steps
- public CHROMA implementation
- arXiv:1203.4469: wilson_flow.c for generating and w0_scale.c for analyzing the flow

Conclusions

• Summary

- proposed new scale-setting observable w_0 based on Wilson flow [BMW-c,arXiv:1203.4469]
- obtained $w_0 = 0.1755(18)(04) \text{ fm}$ in physical units from 2 HEX-smeared Wilson data including physical pion masses
- crosschecked with staggered
- mild quark mass dependence (can be corrected for) and very weak volume dependence
- Applications
 - high-precision scale-setting
 - in combination with QCDSF "mass splitting" strategy: parameter tuning becomes much simpler
 - suitable for anisotropic lattices: [BMW-c, arXiv:1205.0781]