

Joseph Wasem, Michael Buchoff, Tom Luu Lawrence Livermore National Laboratory

# Omega Baryon Interactions with Lattice QCD

LLNL-PRES-533073

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

# **Omega Physics**



- Experiments beginning to probe hyperon physics
- Omega physics least understood
- Good testing ground for nuclear physics lattice calculations
- "Nuclear-like" scattering "at the physical point."

## **Omega Model Calculations**

#### Two model calcs disagree:

 $\Delta E_{\Omega\Omega} = 43 \pm 18 \text{ MeV} \quad (\text{Quark Disloc./Color Screening Model})$ F. Wang, J.-I. Ping, G.-h. Wu, L.-j. Teng, and J. T. Goldman, Phys. Rev. C51, 3411 (1995), nucl-th/9512014.

#### $\Delta E_{\Omega\Omega} = -116 \,\text{MeV} \,(\text{SU}(3) \,\text{Chiral Quark Model})$

Z. Y. Zhang, Y. W. Yu, C. R. Ching, T. H. Ho, and Z.-D. Lu, Phys. Rev. C61, 065204 (2000).

 Would like a model-independent resolution to this question...

# **Interpolating Operators**

 Discretization breaks O(3) symmetry to octahedral subgroup



- Different linear combinations of Ω<sub>αβγ</sub> are in different irreps/embeddings/rows
  - S. Basak et al., Phys. Rev. D72, 074501.

#### **Steps to a Lattice Omega-Omega**



- Gauge Configurations
  - Two ensembles used:
    - 20<sup>3</sup>×256 [(2.5 fm)<sup>3</sup>×9.2 fm]
      - 32<sup>3</sup>×256 [(3.9 fm)<sup>3</sup>×9.2 fm]
  - m<sub>π</sub>~390 MeV



#### H<sup>+</sup> Lattice Data (Single $\Omega$ )



#### $E^+ \& T_2^+$ Lattice Data (Two $\Omega$ )



#### $A_1^+$ Lattice Data (Two $\Omega$ )







#### Lattice Data

| Irrep   | Lattice Size      | $a_t E$  | $\sigma_{E,stat.}$ | $\sigma_{E,sys.}$          | $\chi^2/{ m dof}$ | Q     | $a_t \Delta E$ | $\sigma_{\Delta E,stat.}$ |
|---------|-------------------|----------|--------------------|----------------------------|-------------------|-------|----------------|---------------------------|
| $H^+$   | $20^3 \times 256$ | 0.291501 | 0.000457           | $+0.000099 \\ -0.000268$   | 1.003             | 0.460 |                |                           |
|         | $32^3 \times 256$ | 0.290001 | 0.000804           | +0.000418<br>-0.000001     | 0.850             | 0.708 |                |                           |
| $A_1^+$ | $20^3 \times 256$ | 0.586235 | 0.000843           | $+0.000091 \\ -0.000348$   | 1.105             | 0.327 | 0.00323        | 0.00124                   |
|         | $32^3 \times 256$ | 0.583224 | 0.002002           | $+0.000577 \\ -0.000680$   | 1.086             | 0.350 | 0.00322        | 0.00257                   |
| $T_2^+$ | $20^3 \times 256$ | 0.642961 | 0.007136           | $^{+0.002502}_{-0.005120}$ | 0.925             | 0.514 | 0.05996        | 0.00719                   |
| $E^+$   | $20^3 \times 256$ | 0.67256  | 0.00293            | $^{+0.00013}_{-0.00329}$   | 0.500             | 0.916 | 0.08956        | 0.00307                   |

- Ω mass ~1640 MeV
- $\Omega \Omega$  energy > 2x  $\Omega$  mass
  - Scattering state, not bound

#### **Scattering at Finite Volume**



# A<sub>1</sub><sup>+</sup> Scattering



# A<sub>1</sub><sup>+</sup> Scattering



- 10k random pairs from kcotδ distributions
- Fit to effective range expansion
- r distribution absorbs higher orders
- *a* distribution is Lorentzian

 $a_{S=0}^{\Omega\Omega} = 0.16 \pm 0.22 \,\mathrm{fm}$ 

## Conclusions

- Scattering length & k<sup>2</sup> values indicate a weakly repulsive system.
- $a_{S=0}^{\Omega\Omega} = 0.16 \pm 0.22 \, \text{fm}$  at  $m_{\pi} \sim 390 \, \text{MeV}$
- Light quark dependence expected to be small, but needs to be checked.
- Contrast with other lattice hyperon results that are bound states.
  - May just reflect smaller influence of light quark dynamics
- Phys. Rev. D85 (2012) 094511
  - arXiv:1201.3596 [hep-lat]