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Big Bang Nucleosynthesis

T ~ 1 trillion K — 1 billion K

t~3x10"°s — 3 min
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when systems cool, they settle into the lowest energy state

mass/energy

T, ~ 10 min

Monday, June 25, 2012



when systems cool, they settle into the lowest energy state

mass/energy @

T, ~ 10 min

if nothing else were to happen in the next few
minutes, our universe would be full of only H
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when systems cool, they settle into the lowest energy state

@—@

mass/energy - —9—0

— —
deuteron: 2.2 MeV binding

: formation of nuclei

a system with protons and neutrons can collapse to a compact
bound state, the : the attractive binding of a neutron
and proton allows neutrons to survive when embedded in nuclei
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The deuterium “bottleneck”

mass/energy - —0—0

— —
deuteron: 2.2 MeV binding

. . p+n<+—d+ry
o VN yndil T = 100 keV (I billion K), t = 3 min
N, p+n—d+v

Monday, June 25, 2012



The deuterium “bottleneck” is broken, neutrons flow into He

deuteron: -2.2 MeV

mass/energy

- 00— tritium: -8.5 MeV

- —‘ helium: -28.3 MeV

He stability: T,1 protons and T,! neutrons can be packed together
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o)
Hydrogen
Helium

The early universe contains 75% H and 25% He by mass fraction
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this picture very sensitive to binding energy of deuterium which is
finely tuned (most nuclei have ~8 MeV binding per nucleon)!

By = 2.22 MeV
What if
By <« 2.22 MeV  more finely tuned
all neutrons decay - no helium
mostly hydrogen stars!?

By > 2.22 MeV  natural scenario
all neutrons captured in deuterium and
helium - no hydrogen
no stars like ours!
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this picture very sensitive to binding energy of deuterium which is
(most nuclei have ~8 MeV binding per nucleon)!

By = 2.22 MeV
What if

Bg <« 2.22 MeV

all neutrons decay - no helium
mostly hydrogen stars!?

Bg > 2.22 MeV
all neutrons captured in deuterium and
helium - no hydrogen
no stars like ours!

(

mdq — Ty,

e? /4m )

we want to understand this from QCD

(also very sensitive to M, — My O <

\
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this picture most sensitive to neutron proton mass splitting

X
. : . n __ _—(muy—my)/kT
primordial ratio X, €

my, —m, = 1.29333217(42) MeV

My, — mp — 5M,;Z_p —|— 5M,;rln_dp_mu
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this picture most sensitive to neutron proton mass splitting

X
. : . n __ _—(muy—my)/kT
primordial ratio X, €

my, —m, = 1.29333217(42) MeV

My — Mp = 5M,;Z_p -+ 5M;szp_mu
N————

this separation only
at LO in isospin breaking

(N|(mg — m,,)qq|N) needed to renormalize EM self-energy
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OUTLINE

@ Electromagnetic self-energy corrections

self-energy related to forward Compton scattering

in principle, allows for robust, model independent
determination of self-energy through dispersion theory

two challenges in realizing this method

requires subtracted dispersion integral

== unknown subtraction function
requires renormalization

PRL 108 (2012)
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Cottingham’s Formula PRL 108 (2012)

PRL 2 (1959)
Annals Phys 25 (1963)
T =53 [ d€ 7€ 4po|T (1,9 7,(0)} o)
% i a Tl (p, q)
B VAT /Rd4q 7+ e
62
o= —
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Cottingham’s Formula PRL 108 (2012)

PRL 2 (1959)
Annals Phys 25 (1963)
T =53 [ d€ 7€ 4po|T (1,9 7,(0)} o)

é\ % i« T"(p,q)
MY = 4 H
0 oM (27)3 %‘i T2 ¥ ie
2

o= — Integral diverges and must be
renormalized
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Cottingham’s Formula PRL 108 (2012)

SMY — ? 84 / d4qT;ﬁb(p7 Q)
2M (27)3 Jg q° + i€

@ Wick rotate ¢° — v

@ variable transform Q° = q° + v*

SM? :—/dQ2/ \/Q2 2 T,LILL 5MCt(A)

M
2
Tﬁ = —3 T1 (iV, Q2) + (1 — @) TQ(iV, QQ) . (7&)
2
= —3Q° t1(iv, Q%) + (1 2Q2> Q’t2(iv, Q%) . (7b)

use dispersion integrals to evaluate scalar functions
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Cottingham’s Formula PRL 108 (2012)

27T v — v

Ti(V7Q2) 1 %d / ( 7Q2)

fmmmme—— 5 £
/) Q

Crossing Symmetric

Ti(v, Q%) = Ti(—v, Q%)

T0.Q) = g | gt e, @
V .
& s (V)2 — 12 A

(provided contour and infinity vanishes)
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Cottingham’s Formula PRL 108 (2012)

if contour at infinity does not vanish

subtracted dispersion integral

1 :
APAAAAT— OO A g(v) = (V’zQ )
14

introduces new pole at v =0
which you need to subtract

2

o0 2 /
( v, Q ) - / dV’ VIQ(VIZV QImT’L(V/ T iE, QZ) T TZ (07 QQ)

2 — v?)

S 7

measured experimentally unknown function
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Cottingham’s Formula PRL 108 (2012)

vV
§ also - if there is a fixed pole in the
ASAA /iy I\ function, one needs a subtracted
dispersion integral
v, Q°
Ti(v, Q%) = A ) -9(Q%)

(Q? + 1€)? — 4M?v?

7

this term also gives a problem at
infinity
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Cottingham’s Formula PRL 108 (2012)

It is known that

(v, Q%) [t2(v, Q)]
shti—e——(@—2iiis,  Satisfles unsubtracted dispersion
integral while

T (v, Q%) [ti(r, Q%)
requires a subtraction
Regge behavior

PRL 17 (1966)
Phys.Rev. 158 (1967)
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Cottingham’s Formula PRL 108 (2012)

Nucl Phys B94 (1975)

Claimed that the elastic contributions could be evaluated
without subtracted dispersive integral

- \/Qz 1,2 TH »
M = dQ / M (A
2
Tﬁ = —3 T1 (iV, Q2) + (1 — &) TQ(iV, QQ) . (7&)

@2 ty (iv, Q?) (1 2 QZ) Qta(iv, Q@

SM)_,, = 0.76(30) MeV

central value: from elastic contribution
uncertainty: estimates of inelastic structure contributions
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Cottingham’s Formula PRL 108 (2012)

:%Z / die 8 (po|T {7,(€)J,(0)} [po)

Insert complete set of states: I
isolate elastic contributions 1 — Z T)(T|
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Cottingham’s Formula PRL 108 (2012)

:%Z / die 8 (po|T {7,(€)J,(0)} [po)

Insert complete set of states: I
isolate elastic contributions 1 = E ) (T
|
A 3/2 .. 3/2 3 3/2
el Q 9 9 9 9 (1—|-7'el) Tel 5V Tel 3 2 2\ Tel
6Munsub a ;/0 dQ{ G Q - 27—6 G (Q )} 1+ Tl o §GM(Q )1 1Ty } ’ (8&)
A? 3/2 3/2 3/2
el Q 2 2 2 2 (1+Tel)/ — 7a® 2 2 Tet?/
5Munsubb %./O dQ{ G Q o 27—6 G (Q )] 1 ‘|_7-el —I_BGM(Q )1 "|_7-el }7 (8b)
2
TH = —3T(iv, Q%) + (1 - —) Ty (iv, Q%) , (7a)
2 0 2
SMY = dQ2/ \/Q +5M“(A) : 2
= —3Q% t1(iv, Q%) + (1 + 2@> Q%to(iv, Q%) . (7b)
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Cottingham’s Formula PRL 108 (2012)

:%Z / die 8 (po|T {7,(€)J,(0)} [po)

Insert complete set of states: I
isolate elastic contributions 1 = E T)(T|
|
A 3/2 3/2 3
el - 2 2 2 2 (1+T€l> / — Tel /2 — 5V Tel 3 o 5 Tel3/2
5Munsub a ;/0 dQ{ G Q - 27—6 G (Q )} 1+ Tl o iGM(Q )1 1Ty } ’ (8&)
A? 3/2 3/2 3/2
el Q 2 2 2 2 (1+Tel)/ — Tet®/ 2 2 Tet/
5Munsubb %./O dQ{ G Q _ 27—6 G (Q )] 1 -7y —I_BGM(Q )1 +Tel }7 (8b)
2
TH = —3T(iv, Q%) + (1 - —) Ty (iv, Q%) , (7a)
5 T 2
SMY = dQ2/ \/Q +5M“(A) : 2
— 3@ (. Q) + (1425 ) Pualin ). (1)

One must use a subtracted dispersive
integral even for elastic terms
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Cottingham’s Formula PRL 108 (2012)

:%Z / die 8 (po|T {7,(€)J,(0)} [po)

Insert complete set of states: I
isolate elastic contributions 1 — Z
| T
5M528ub = /A { [G2 (Q2) 27, G2 (Q2)] (1+ Tel)3/21_+7'76_ , \/7 gG?w(QZ) f:f’zl } | (8a)

A2 3/2 . 3/2 3/2
1 Tel) Tel Tel
A [el G2 2 —9 . G2 2 ( G2 2
unsub, b — / dQ { Q Tel (Q )] 1 - T | 3 M(Q ) 1 | o ) (8b)

typlcally quoted as elastic Cottingham

TH = -3T1(iv,Q%) + (1 — @) Ty (iv, Q%) , (7a)

— 3Q% (i, Q%) + (1 +2—> Q*ta(iv, Q%) . (Th)

SM7 =—— dQ2 / VQQ +(5MCt(A)

One must use a subtracted dispersive
integral even for elastic terms
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Cottingham’s Formula PRL 108 (2012)

perform once subtracted dispersion integral for 77 (1)
and unsubtracted dispersion integral for T5(%2)

5M’y:5M6l_|_5Minel_|_6Msub_|_5Mct
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Cottingham’s Formula PRL 108 (2012)

perform once subtracted dispersion integral for 77 (1)
and unsubtracted dispersion integral for T5(%2)

5M’y:5Mel_|_5Minel_|_5Msub_|_5Mct

3T Gy — 27, G3
5M€l Oé/ dQ{ T, 4 [ Tel M] [(1_|_7_€l)3/2_’7'el3/2_g\/7_—6l]}

T (1 + Tel) 1+ 7

2 _ 2

5M7§nel_g/AO dQ2 ood SFl(VaQQ) 73/2_7\/1+T+ﬁ/2 Tel = Q
B T Jo 2@ g M T 4M2

P (v, Q%) [ 3/2 32 9 v’

’ . 9 = —

-+ > (]. —+ 7_) T 2\/?] } , Q2

30 A
5Msub _ d 2 T 2

SM = — Ja B dQ’ Z C1:(0"°), OPE: operators and Wilson coeffic
167TM A% y ’ ’ * P .

Nucl. Phys. BI149 (1979)
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Cottingham’s Formula PRL 108 (2012)

elastic contribution: use well measured form factors

3vTaG3,  |GE — 21 G5 3
s/l — Oz/dg : MLV o )32 32 0 e
7 {(1—|—7-€l) 1+ 7 (14 7er) el g Vel

oM ® = 1.39(02) MeV

p—n

@ insensitive to value of Ay since form factors fall as
1/Q*

@ uncertainty from Monte Carlo evaluation of
parameters describing form factors

central values: A2 =2 GeV?

uncertainties: 15 (QeV?2 < A(Q) <25 GeV2
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Cottingham’s Formula PRL 108 (2012)

inelastic terms: use modern knowledge of structure functions to
improve determination of inelastic contributions

5Minel _ g

T

/A3 dQ? [ { 3Fy (1, Q2) [73/2 — 7T+ 7 + ﬁ/z]
— dv
o 2Q /., M T

N FQ(VV,QZ) _(1 n 7)3/2 _ 3/2 _ g\/;] } |

SN |, = 0.057(16) MeV

@ contributions from two regions:
resonance region
scaling region

@ uncertainty dominated by choice of transition
between two regions
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Cottingham’s Formula PRL 108 (2012)

renormalization: complicated story (no time)

quark mass operator renormalizes EM self-energy: can not
cleanly separate these two contributions (but mixing is higher
order in isospin breaking)

summary: (J.C. Collins) with Naive Dimensional Analysis and
suitable renormalization (dim. reg.) one can show the
contribution from the operator is numerically second order in
isospin breaking

A(Q) eimu — eflmd

M, =3aln( — i — d
oMy~ = 30 H(A%> o s WPlo(au —dd)|p)

20 = Mg — My,

ONIL,| < 0.02 MeV
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Cottingham’s Formula PRL 108 (2012)

subtraction term: most challenging part - dealing with unknown
subtraction function

2
3 A

5Msub _
16w M 0

dQ2 Tl (Oa Q2) 9

@ low energy: constrained by effective field theory

T3(0,Q%) = 202+ ) — Q{5 (14 P = 1] + 7 — 20

T . } +0(QY),

most of these contributions come from Low
Energy Theorems and are “elastic” (arising from a
photon striking an on-shell nucleon)

Phys. Rev.A53 (1996); Phys. Rev. C67 (2003);
Phys. Rev. C71 (2005); PRL 107 (201 1);
Phys.Rev.A84 (201 I); arXivl 109.3779;
arXiv:1206.3030
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Cottingham’s Formula PRL 108 (2012)

subtraction term: most challenging part - dealing with unknown
subtraction function

3 AG
— dO? T;(0, Q?

5Msub _

@ high energy: OPE (perturbative QCD) constrains
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Cottingham’s Formula PRL 108 (2012)

subtraction term: most challenging part - dealing with unknown
subtraction function

AZ
a2 [ age [zc;% - zFf] M| = 0.62 MeV
I 0 p—n
SﬁM Ag m2 °
5M§ub _ d 2.2 0
tnel Q7 0 Q Q (m% _|_Q2>

P — —1.0£1.0 x 10~* fm’

Prog.Nucl.Part.Phys.
(2012)

taking mg = 0.71 GeV~

SMEUh — 0.47 £ 0.47 MeV

1nel
pP—n
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Cottingham’s Formula PRL 108 (2012)

adding it all up:

SMY| = 1.30(03)(47) MeV
p—n PRL 108 (2012)
= 0.76(30) MeV
Nucl Phys B94 (1975)

We reduced the uncertainty from structure by an order of
magnitude! But we uncovered an oversight that dominates the
uncertainty :(

Monday, June 25, 2012



Cottingham’s Formula PRL 108 (2012)

adding it all up:

SMY|  =1.30(03)(47) MeV
p—n PRL 108 (2012)

= 0.76(30) MeV
Nucl Phys B94 (1975)

expectation from experiment + lattice QCD

SMY| = —1.29333217(42) + 2.53(40) MeV

D—n
= 1.24(40) MeV \

average of 3 independent lattice
results
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Conclusions

@ attempt to improve the old determination of nucleon iso-vector EM
self-energy uncovered an oversight

@ no avoiding the subtraction (dispersion integral)

@ modeling was necessary to control uncertainty
subtraction function

@ 2 central value was found in much better agreement with
expectations from lattice QCD + experiment
(but in agreement within uncertainties with G&L)

@ comparison with independent determinations of iso-vector
nucleon magnetic polarizability show the modeling is not crazy

@ improvements will come from three areas

@ improved measurement of [
: : p—n
@ lattice QCD calculation of iy

@ including EM effects with lattice QCD
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Back Up

Entire discussion - intimately related to recent
proton size puzzle

Sticking In Form Factor

start with relativistic Lagrangian for nucleons - at vertices, insert
measured form factors (SIFF)
- 4072 ()2
1 Q" Gy (Q7)

Tl(Va Qz) — M (Q2 n 2-6)2 _AM212 Flz(Q2)

Phys.Rev.A84 (201 I); arXivl 109.3779;

validated by low energy theorems for nucleon Compton
scattering, and verified to O(Q*) in heavy baryon xPT

arXiv:1206.3030
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