
Adventures in Single Precision
on the GTX 580

Waseem Kamleh

University of Adelaide

Lattice 2012, Cairns, Australia

Desert Country

• Australia is famous for its vast inland desert.

Desert Country

COUNTRY Top 20 Top 100 Top 200 Top 500
USA 17 53 89 151
UK 3 10 19 37
Germany 0 6 14 39
Japan 0 5 9 23
Canada 0 4 8 22
Australia 0 4 7 19

Table: Top 6 countries, as ranked by the Academic Ranking of World
Universities (ARWU) in 2011. Also know as the Shanghai Ranking.

http://www.shanghairanking.com/

Desert Country

Country Top500 Total Cores Rmax Rpeak

Japan 15 379274 5380.2 7669.0
USA 26 488037 4128.1 5341.6
Germany 8 260920 3986.1 4666.4
UK 7 228000 2299.4 2899.3
Canada 6 90576 710.7 935.7
Australia 2 21536 213.6 247.4

Table: Selected statistics from the Academic segment of the June
2012 Supercomputing Top 500. Data are shown for the Top 6 ARWU
countries only. Rmax and Rpeak are in Tflops.

http://www.top500.org/

Desert Country

COUNTRY TOP 500 TOTAL Rmax ARWU 500 500/500
Japan 15 5380.2 23 233.9
Germany 8 3986.1 39 102.2
UK 7 2299.4 37 62.1
Canada 6 710.7 22 32.3
USA 26 4128.1 151 27.3
Australia 2 213.6 19 11.2

Table: Data of interest for the selected countries. Listed are the
number of Top 500 entries, the combined Teraflops under the
Academic segment, the number of ARWU 500 entries and our
proposed 500/500 measure of Academic HPC resources.

500/500 Scores by Country

Australia Canada GermanyJapan UK USA
0

50

100

150

200

250

Figure: The 500/500 scores for the selected countries.

Where the bloody hell are you?

Where the bloody hell are you?

Where the bloody hell are you?

Where the bloody hell are you?

GPGPU Computing

• General purpose computing on Graphics Processing Units.
• 2006: Egri et al. Lattice QCD as a Video Game

http://arxiv.org/abs/hep-lat/0611022
• NVIDIA CUDA.
• Cost-effective alternative to CPU clusters.
• Tesla vs GTX?

GPGPU Computing

• General purpose computing on Graphics Processing Units.
• 2006: Egri et al. Lattice QCD as a Video Game

http://arxiv.org/abs/hep-lat/0611022
• NVIDIA CUDA.
• Cost-effective alternative to CPU clusters.
• Tesla vs GTX?

GPGPU Computing

• General purpose computing on Graphics Processing Units.
• 2006: Egri et al. Lattice QCD as a Video Game

http://arxiv.org/abs/hep-lat/0611022
• NVIDIA CUDA.
• Cost-effective alternative to CPU clusters.
• Tesla vs GTX?

GPGPU Computing

• General purpose computing on Graphics Processing Units.
• 2006: Egri et al. Lattice QCD as a Video Game

http://arxiv.org/abs/hep-lat/0611022
• NVIDIA CUDA.
• Cost-effective alternative to CPU clusters.
• Tesla vs GTX?

GPGPU Computing

• General purpose computing on Graphics Processing Units.
• 2006: Egri et al. Lattice QCD as a Video Game

http://arxiv.org/abs/hep-lat/0611022
• NVIDIA CUDA.
• Cost-effective alternative to CPU clusters.
• Tesla vs GTX?

NVIDIA Tesla

Figure: http://www.nvidia.com/object/tesla-servers.html

Tesla vs GeForce

• GTX 580 peaks at 1581 flops in single precision.
• GTX 680 peaks at 3090 flops in single precision.
• GTX card costs 20%-25% of a Tesla card.
• Single compute node, similar cost:

• 1 × Tesla
• 4 × GTX

• How badly do we need double precision?

Tesla vs GeForce

• GTX 580 peaks at 1581 flops in single precision.
• GTX 680 peaks at 3090 flops in single precision.
• GTX card costs 20%-25% of a Tesla card.
• Single compute node, similar cost:

• 1 × Tesla
• 4 × GTX

• How badly do we need double precision?

Tesla vs GeForce

• GTX 580 peaks at 1581 flops in single precision.
• GTX 680 peaks at 3090 flops in single precision.
• GTX card costs 20%-25% of a Tesla card.
• Single compute node, similar cost:

• 1 × Tesla
• 4 × GTX

• How badly do we need double precision?

Tesla vs GeForce

• GTX 580 peaks at 1581 flops in single precision.
• GTX 680 peaks at 3090 flops in single precision.
• GTX card costs 20%-25% of a Tesla card.
• Single compute node, similar cost:

• 1 × Tesla
• 4 × GTX

• How badly do we need double precision?

Tesla vs GeForce

• GTX 580 peaks at 1581 flops in single precision.
• GTX 680 peaks at 3090 flops in single precision.
• GTX card costs 20%-25% of a Tesla card.
• Single compute node, similar cost:

• 1 × Tesla
• 4 × GTX

• How badly do we need double precision?

Tesla vs GeForce

• GTX 580 peaks at 1581 flops in single precision.
• GTX 680 peaks at 3090 flops in single precision.
• GTX card costs 20%-25% of a Tesla card.
• Single compute node, similar cost:

• 1 × Tesla
• 4 × GTX

• How badly do we need double precision?

Tesla vs GeForce

• GTX 580 peaks at 1581 flops in single precision.
• GTX 680 peaks at 3090 flops in single precision.
• GTX card costs 20%-25% of a Tesla card.
• Single compute node, similar cost:

• 1 × Tesla
• 4 × GTX

• How badly do we need double precision?

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

Single vs Double

• Gauge field generation:
• Need to preserve unitarity

=⇒ double precision.
• Can’t easily “check” solution

=⇒ needs ECC memory.

• Quark propagator calculation:
• Solution tolerance ∼ 10−5

=⇒ only need single precision.
• Can check solution easily.

=⇒ don’t need ECC.

• Strategy:
• Obtain gauge fields from the ILDG.
• Focus computational efforts on quark propagators.

PACS-CS Simulation Details

PACS-CS Collaboration: S. Aoki, et al., Phys. Rev. D79 (2009)
034503.

• Lattice volume: 323 × 64
• Non-perturbative O(a)-improved Wilson quark action
• Iwasaki gauge action
• 2 + 1 flavour dynamical-fermion QCD
• β = 1.9 providing a = 0.0907 fm
• Kud = { 0.13700, 0.13727, 0.13754, 0.13770, 0.13781 }
• Ks = 0.13640
• Lightest pion mass is 156 MeV.
• Five ensembles of 350 configurations.
• 750 sources for lightest mass.

GPU Matrix Kernel

• M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi,
Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs, Comput.Phys.Commun. 181 (2010)

• 8 parameter gauge field reconstruction.
• 12 parameter gauge field reconstruction.
• Half-precision (FP16).
• Fixed-precision.
• Dirac basis: Chiral vs non-relativistic.
• Temporal gauge fixing.

• In-house CUDA fermion matrix code benchmarks.

GPU Matrix Kernel

• M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi,
Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs, Comput.Phys.Commun. 181 (2010)

• 8 parameter gauge field reconstruction.
• 12 parameter gauge field reconstruction.
• Half-precision (FP16).
• Fixed-precision.
• Dirac basis: Chiral vs non-relativistic.
• Temporal gauge fixing.

• In-house CUDA fermion matrix code benchmarks.

GPU Matrix Kernel

• M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi,
Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs, Comput.Phys.Commun. 181 (2010)

• 8 parameter gauge field reconstruction.
• 12 parameter gauge field reconstruction.
• Half-precision (FP16).
• Fixed-precision.
• Dirac basis: Chiral vs non-relativistic.
• Temporal gauge fixing.

• In-house CUDA fermion matrix code benchmarks.

GPU Matrix Kernel

• M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi,
Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs, Comput.Phys.Commun. 181 (2010)

• 8 parameter gauge field reconstruction.
• 12 parameter gauge field reconstruction.
• Half-precision (FP16).
• Fixed-precision.
• Dirac basis: Chiral vs non-relativistic.
• Temporal gauge fixing.

• In-house CUDA fermion matrix code benchmarks.

GPU Matrix Kernel

• M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi,
Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs, Comput.Phys.Commun. 181 (2010)

• 8 parameter gauge field reconstruction.
• 12 parameter gauge field reconstruction.
• Half-precision (FP16).
• Fixed-precision.
• Dirac basis: Chiral vs non-relativistic.
• Temporal gauge fixing.

• In-house CUDA fermion matrix code benchmarks.

GPU Matrix Kernel

• M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi,
Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs, Comput.Phys.Commun. 181 (2010)

• 8 parameter gauge field reconstruction.
• 12 parameter gauge field reconstruction.
• Half-precision (FP16).
• Fixed-precision.
• Dirac basis: Chiral vs non-relativistic.
• Temporal gauge fixing.

• In-house CUDA fermion matrix code benchmarks.

GPU Matrix Kernel

• M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi,
Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs, Comput.Phys.Commun. 181 (2010)

• 8 parameter gauge field reconstruction.
• 12 parameter gauge field reconstruction.
• Half-precision (FP16).
• Fixed-precision.
• Dirac basis: Chiral vs non-relativistic.
• Temporal gauge fixing.

• In-house CUDA fermion matrix code benchmarks.

GPU Matrix Kernel

• M. A. Clark, R. Babich, K. Barros, R. C. Brower, C. Rebbi,
Solving Lattice QCD systems of equations using mixed precision
solvers on GPUs, Comput.Phys.Commun. 181 (2010)

• 8 parameter gauge field reconstruction.
• 12 parameter gauge field reconstruction.
• Half-precision (FP16).
• Fixed-precision.
• Dirac basis: Chiral vs non-relativistic.
• Temporal gauge fixing.

• In-house CUDA fermion matrix code benchmarks.

Clover Matrix Kernel Benchmarks

16 18 20 22 24 26 28 30 32
0

100

200

300

400

L3 × 64 lattice

G
flo

ps

Half-Precision+ 8-Parameter GF
Single-Precision + 12-Parameter GF

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

Solver Choice

• PACS-CS configurations:
• Large lattice sizes.
• Light quark mass.

• Mixed precision:
• Large memory footprint.
• Half-precision too unstable.

• Minimal performance loss by using single precision.
• Solver is bandwidth-limited anyway.
• Single precision:

• Reduced memory footprint.
• BiCGStab is unstable.
• Flying restarts can help a little bit.
• Try a minimum residual solver: CGNE.

CGNE

• Within tolerance δtol, want solution to

Dx = b.

• Instead solve normal equation (NE):

D†Dx = D†b.

• In double precision, NE convergence usually ⇒ solution.
• In single precision, NE converges well before we have

obtained desired solution.
• Trick: When CGNE converges with tolerance δne, check if

we have solution to within δtol.

• If not, adjust δne and restart CGNE with current solution.

CGNE

• Within tolerance δtol, want solution to

Dx = b.

• Instead solve normal equation (NE):

D†Dx = D†b.

• In double precision, NE convergence usually ⇒ solution.
• In single precision, NE converges well before we have

obtained desired solution.
• Trick: When CGNE converges with tolerance δne, check if

we have solution to within δtol.

• If not, adjust δne and restart CGNE with current solution.

CGNE

• Within tolerance δtol, want solution to

Dx = b.

• Instead solve normal equation (NE):

D†Dx = D†b.

• In double precision, NE convergence usually ⇒ solution.
• In single precision, NE converges well before we have

obtained desired solution.
• Trick: When CGNE converges with tolerance δne, check if

we have solution to within δtol.

• If not, adjust δne and restart CGNE with current solution.

CGNE

• Within tolerance δtol, want solution to

Dx = b.

• Instead solve normal equation (NE):

D†Dx = D†b.

• In double precision, NE convergence usually ⇒ solution.
• In single precision, NE converges well before we have

obtained desired solution.
• Trick: When CGNE converges with tolerance δne, check if

we have solution to within δtol.

• If not, adjust δne and restart CGNE with current solution.

CGNE

• Within tolerance δtol, want solution to

Dx = b.

• Instead solve normal equation (NE):

D†Dx = D†b.

• In double precision, NE convergence usually ⇒ solution.
• In single precision, NE converges well before we have

obtained desired solution.
• Trick: When CGNE converges with tolerance δne, check if

we have solution to within δtol.

• If not, adjust δne and restart CGNE with current solution.

CGNE

• Within tolerance δtol, want solution to

Dx = b.

• Instead solve normal equation (NE):

D†Dx = D†b.

• In double precision, NE convergence usually ⇒ solution.
• In single precision, NE converges well before we have

obtained desired solution.
• Trick: When CGNE converges with tolerance δne, check if

we have solution to within δtol.

• If not, adjust δne and restart CGNE with current solution.

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

CGNE with Restarts

1 Set y := rne := D†Dx − D†b, ρ := |rne|2 (δne := δtol).

2 Set β := 〈y,D†Dy〉, ω := ρ/β.

3 Set x := x + ωy, rne := rne − ωD†Dy.
4 Set ρ′ := ρ, ρ := |rne|2, θ := −ρ/ρ′.

5 If
√
ρ = |rne| < δne then:

• If true error ε := |Dx − b| < δtol, we are finished.
• Otherwise, set ε′ := |D†Dx − D†b| and update

δne := τ × δtol ×
ε′

ε
,

then restart CGNE (go to 1).
• τ ∼ 0.9 controls restart frequency.

else:
• Set y := rne − θy and continue (go to 2).

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Production Code

In-house CUDA quark propagator code.
• 8 parameter gauge field reconstruction. 7
• 12 parameter gauge field reconstruction. X
• Half-precision (FP16). 7
• Fixed precision. 7
• Dirac basis: Chiral Xvs non-relativistic. 7
• Temporal gauge fixing. X

• + Fixed boundary conditions optimisation. X
• Reconstruct uniform background U(1) field. X
• CGNE with restarts. X
• Linear systems solver sustains above 200 Gflops.

Solver Performance, κ = 0.13700

0 100 200 300 400 500 600 700

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr

or

Residual (NE)
True Error (NE)

True Error
Tolerance

Solver Performance, κ = 0.13727

0 100 200 300 400 500 600 700 800

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr

or

Residual (NE)
True Error (NE)

True Error
Tolerance

Solver Performance, κ = 0.13754

0 400 800 1,200 1,600 2,000
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr

or

Residual (NE)
True Error (NE)

True Error
Tolerance

Solver Performance, κ = 0.13770

0 500 1,000 1,500 2,000 2,500 3,000 3,500
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr

or

Residual (NE)
True Error (NE)

True Error
Tolerance

Solver Performance, κ = 0.13781

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr

or

Residual (NE)
True Error (NE)

True Error
Tolerance

Solver Performance, κ = 0.13781

7,090 7,100 7,110 7,120 7,130

10−6

10−5

Iterations

E
rr

or

Residual (NE)
True Error (NE)

True Error
Tolerance

Coming Soon

Cores Peak (SP) Peak (DP)
GTX 580 512 (Fermi) 1581 Gflops 166 Gflops

Tesla M2090 512 (Fermi) 1331 Gflops 665 Gflops
GTX 680 1536 (Kepler) 3090 Gflops 95 Gflops
Tesla K20 ??? (Kepler) ??? > 1 Tflop
Xeon Phi > 50 (MIC) ??? > 1 Tflop

• Xeon Phi (codenamed Knight’s Corner).
• 1 Tflop double precision.
• x86-compatible architecture.
• Reduces code-porting overhead.
• Cost?

Coming Soon

Cores Peak (SP) Peak (DP)
GTX 580 512 (Fermi) 1581 Gflops 166 Gflops

Tesla M2090 512 (Fermi) 1331 Gflops 665 Gflops
GTX 680 1536 (Kepler) 3090 Gflops 95 Gflops
Tesla K20 ??? (Kepler) ??? > 1 Tflop
Xeon Phi > 50 (MIC) ??? > 1 Tflop

• Xeon Phi (codenamed Knight’s Corner).
• 1 Tflop double precision.
• x86-compatible architecture.
• Reduces code-porting overhead.
• Cost?

Coming Soon

Cores Peak (SP) Peak (DP)
GTX 580 512 (Fermi) 1581 Gflops 166 Gflops

Tesla M2090 512 (Fermi) 1331 Gflops 665 Gflops
GTX 680 1536 (Kepler) 3090 Gflops 95 Gflops
Tesla K20 ??? (Kepler) ??? > 1 Tflop
Xeon Phi > 50 (MIC) ??? > 1 Tflop

• Xeon Phi (codenamed Knight’s Corner).
• 1 Tflop double precision.
• x86-compatible architecture.
• Reduces code-porting overhead.
• Cost?

Coming Soon

Cores Peak (SP) Peak (DP)
GTX 580 512 (Fermi) 1581 Gflops 166 Gflops

Tesla M2090 512 (Fermi) 1331 Gflops 665 Gflops
GTX 680 1536 (Kepler) 3090 Gflops 95 Gflops
Tesla K20 ??? (Kepler) ??? > 1 Tflop
Xeon Phi > 50 (MIC) ??? > 1 Tflop

• Xeon Phi (codenamed Knight’s Corner).
• 1 Tflop double precision.
• x86-compatible architecture.
• Reduces code-porting overhead.
• Cost?

Coming Soon

Cores Peak (SP) Peak (DP)
GTX 580 512 (Fermi) 1581 Gflops 166 Gflops

Tesla M2090 512 (Fermi) 1331 Gflops 665 Gflops
GTX 680 1536 (Kepler) 3090 Gflops 95 Gflops
Tesla K20 ??? (Kepler) ??? > 1 Tflop
Xeon Phi > 50 (MIC) ??? > 1 Tflop

• Xeon Phi (codenamed Knight’s Corner).
• 1 Tflop double precision.
• x86-compatible architecture.
• Reduces code-porting overhead.
• Cost?

Summary

• Australian academic supercomputing resources are
sparse.

• GeForce cards are a cost-effective alternative for quark
propagator calculations.

• Single-precision is enough to solve for the inverse fermion
matrix.

• For stability of convergence, a minimal residual solver is
best.

• CGNE with restarts works for light quark masses and large
lattices.

• Use of accelerators/co-processors is likely to increase in
the short term.

Summary

• Australian academic supercomputing resources are
sparse.

• GeForce cards are a cost-effective alternative for quark
propagator calculations.

• Single-precision is enough to solve for the inverse fermion
matrix.

• For stability of convergence, a minimal residual solver is
best.

• CGNE with restarts works for light quark masses and large
lattices.

• Use of accelerators/co-processors is likely to increase in
the short term.

Summary

• Australian academic supercomputing resources are
sparse.

• GeForce cards are a cost-effective alternative for quark
propagator calculations.

• Single-precision is enough to solve for the inverse fermion
matrix.

• For stability of convergence, a minimal residual solver is
best.

• CGNE with restarts works for light quark masses and large
lattices.

• Use of accelerators/co-processors is likely to increase in
the short term.

Summary

• Australian academic supercomputing resources are
sparse.

• GeForce cards are a cost-effective alternative for quark
propagator calculations.

• Single-precision is enough to solve for the inverse fermion
matrix.

• For stability of convergence, a minimal residual solver is
best.

• CGNE with restarts works for light quark masses and large
lattices.

• Use of accelerators/co-processors is likely to increase in
the short term.

Summary

• Australian academic supercomputing resources are
sparse.

• GeForce cards are a cost-effective alternative for quark
propagator calculations.

• Single-precision is enough to solve for the inverse fermion
matrix.

• For stability of convergence, a minimal residual solver is
best.

• CGNE with restarts works for light quark masses and large
lattices.

• Use of accelerators/co-processors is likely to increase in
the short term.

Summary

• Australian academic supercomputing resources are
sparse.

• GeForce cards are a cost-effective alternative for quark
propagator calculations.

• Single-precision is enough to solve for the inverse fermion
matrix.

• For stability of convergence, a minimal residual solver is
best.

• CGNE with restarts works for light quark masses and large
lattices.

• Use of accelerators/co-processors is likely to increase in
the short term.

