Autocorrelation studies in two-flavour Wilson Lattice QCD using DD-HMC algorithm

Abhishek Chowdhury, Asit K. De, Sangita De Sarkar, A. Harindranath, Jyotirmoy Maiti, <u>Santanu Mondal</u>, Anwesa Sarkar

June 25, Lattice 2012, Cairns, Australia

- Dynamical Wilson fermion simulations at smaller quark masses, smaller lattice spacings and and larger lattice volumes on currently available computers have become feasible with recent developments such as DD-HMC algorithm (Luscher).
- Measurements of autocorrelation times help us to evaluate the performance of an algorithm in overcoming critical slowing down.
- In addition, an accurate determination of the uncertainty associated with the measurement of an observable requires a realistic estimation of the autocorrelation of the observable.
- In this work we study autocorrelations of several observables measured with DD-HMC algorithm using naive Wilson fermion and gauge action.

Definitions

The normalized autocorrelation function for an observable \mathcal{O} is defined as, $\Gamma^{\mathcal{O}}(t) = C^{\mathcal{O}}(t)/C^{\mathcal{O}}(0)$ where

$$C^{\mathscr{O}}(t) = \frac{1}{N-t} \sum_{r=1}^{N-t} (\mathscr{O}_r - \langle \mathscr{O} \rangle) (\mathscr{O}_{r+t} - \langle \mathscr{O} \rangle) , \quad \langle \mathscr{O} \rangle = \frac{1}{N} \sum_{t=1}^{N} \mathscr{O}_t.$$

The integrated autocorrelation time is,

$$\tau_{\text{int}}^{\mathscr{O}} = \frac{1}{2} + \sum_{t=1}^{\text{window}} \mathsf{\Gamma}^{\mathscr{O}}(t)$$

The error,

$$\delta \langle \mathscr{O}
angle = \sqrt{rac{2 au_{int}(\mathscr{O}) \mathsf{var}[\mathscr{O}]}{N}}$$

For any stationary Markov chain satisfiying ergodicity and detailed balance,

$$\Gamma^{\mathscr{O}}(t) = \sum_{n \geq 1} e^{-t/\tau_n} |\eta_n(\mathscr{O})|^2$$

where $\tau_n = -\frac{1}{\ln \lambda_n}$. λ_n 's are real eigenvalues of symmetrized probability transition matrix with $\lambda_0 = 1$ and $|\lambda_n| < 1$ for $n \ge 1$. $\tau_1 = -\frac{1}{\ln \lambda_1} \rightarrow$ exponential autocorrelation time (τ_{exp}) .

- Different obsevables couples differently to the eigenmodes.
- $\Gamma^{\mathscr{O}}(t)$ cannot be negative.

Simulation Details

 $\beta = 5.6$

tag	lattice	к	block	N ₂	N _{trj}	τ
B _{1b}	$24^3 \times 48$	0.1575	$12^2 \times 6^2$	18	13128	0.5
B _{3a}	,,	0.158	$6^3 \times 8$	6	7200	0.5
B _{3b}	,,	0.158	$12^2 imes 6^2$	18	13646	0.5
B _{4a}	,,	0.158125	$6^3 \times 8$	8	9360	0.5
B _{4b}	,,	0.158125	$12^2 \times 6^2$	18	11328	0.5
B _{5a}	,,	0.15825	$6^3 \times 8$	8	6960	0.5
B _{5b}	,,	0.15825	$12^2 \times 6^2$	18	12820	0.5
<i>C</i> ₂	$32^3 \times 64$	0.158	$8^3 imes 16$	8	7576	0.5
<i>C</i> ₃	,,	0.15815	$8^3 imes 16$	8	9556	0.5
<i>C</i> ₄	,,	0.15825	$8^3 imes 16$	8	4992	0.25
$\beta = 5.8$						
tag	lattice	к	block	N ₂	N _{trj}	τ
D_1	$32^3 \times 64$	0.1543	$8^3 imes 16$	8	9600	0.5
D_5	,,	0.15475	$8^3 imes 16$	8	6820	0.25

Table: Here *block*, N_2 , N_{trj} , τ refers to HMC block, step number for the force F_2 , number of HMC trajectories and the Molecular Dynamics trajectory length respectively.

Negativity of autocorrelation function for plaquette

æ

Improved Estimation of τ_{int} :

Let τ_* be the best estimate of dominant time constant. If for an observable \mathscr{O} all relevant time scales are smaller or of the same order of τ_* then the upper bound of τ_{int} ,

$$\tau_{int}^{u} = \frac{1}{2} + \sum_{t=1}^{W_{u}} \Gamma^{\mathscr{O}}(W_{u}) + A_{\mathscr{O}}(W_{u})\tau_{*} \text{ where } A_{\mathscr{O}} = max(\Gamma^{\mathscr{O}}(W_{u}), 2\delta\Gamma^{\mathscr{O}}(W_{u})),$$

 W_u chosen where autocorrelation function is still significant.

Estimate of τ_* :

$$\tau_{eff} = \frac{t}{2 \ln \frac{\Gamma^{\mathcal{O}}(t/2)}{\Gamma^{\mathcal{O}}(t)}}$$
$$\tau_{eff}^{exp} = Max_{\mathcal{O}} \left[\frac{t}{2 \ln \frac{\Gamma^{\mathcal{O}}(t/2)}{\Gamma^{\mathcal{O}}(t)}} \right]$$

S. Schaefer *et al.* [ALPHA Collaboration], Nucl. Phys. B 845, 93 (2011);
 S. Schaefer and F. Virotta, PoS LATTICE 2010, '042⁻(2010).

Figure: Normalized autocorrelation function and effective autocorrelation time for P_0 (left) Q_{20}^2 (right) for the ensemble B_{3b} .

・ロト ・聞ト ・ヨト ・ヨト

э

Autocorrelations for topological susceptibility (Q_{20}^2)

Figure: Integrated autocorrelation times for topological suceptibilities (Q_{20}^2) at $\beta = 5.6$ (a = 0.069 fm) (left) and at $\beta = 5.8$ (right) (a = 0.053 fm).

 $au_{int}(Q^2_{20})\downarrow$ as $\kappa\uparrow$

Figure: Integrated autocorrelation times and their upper bounds (τ_{int}^{u}) for topological suceptibilities (Q_{20}^{2}) at $\beta = 5.6$ (a = 0.07 fm) (left) and at $\beta = 5.8$ (right) (a = 0.055 fm).

(日)、

 $au_{int}(Q^2_{20})$ & $au^u_{int}(Q^2_{20})\downarrow$ as $\kappa\uparrow$

Topological Charge Density Correlator (C(r))

Figure: (left) Comaparison of normalized autocorrelation functions for Q_{20}^2 at $\beta = 5.6$ and 5.8. (right) Comparison of β dependence of normalized autocorrelation functions for Q_{20}^2 and C(r = 12.0).

C(r) is affected only slightly by critical slowing down.

More about the properties of $C(r) \rightarrow \text{talk}$ by SM, Session: Chiral Symmetry

Effect of Size and Smearing

Figure: Integrated autocorrelation times of Wilson loops for different sizes (left) and for different levels of HYP smearing (right).

Autocorrelation increases with increasing size and smearing level.

Pion and Nucleon Propagators

$\beta = 5.0$				
tag	к	$ au_{int}^{Pion}$	$ au_{int}^{Nucleon}$	
B _{3a}	0.158	99(19)	75(18)	
B _{4a}	0.158125	50(9)	34(9)	
B _{5a}	0.15825	40(10)	25(9)	
<i>C</i> ₂	0.158	39(13)	33(17)	
<i>C</i> ₃	0.15815	31(15)	26(7)	
C_4	0.15825	34(11)	18(6)	

n

Table: Integrated autocorrelation times for pion (PP) and nucleon propagators with wall sources.

Autocorrelation decreases with increasing κ .

About low lying hadron hadrons and chiral condensate \rightarrow talk by Asit De, session: Chiral Symmetry

Figure: Integrated autocorrelation times for *PP*, *AP*, *PA* and *AA* correlators with wall source for the ensemble B_{3a} . Measurements are done with a gap of 24 trajectories.

$$P = \overline{q} \gamma_5 q \text{ and}$$

$$A = \overline{q} \gamma_4 \gamma_5 q$$

$$q = u/d \text{ quark.}$$

Conclusions

• Autocorrelations of topological susceptibility, pion and nucleon propagators decrease with decreasing quark mass.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The topological charge density correlator is affected only slightly by critical slowing down compared to topological susceptibility.
- Increasing the size and the smearing level increases the autocorrelation of Wilson loop.

$\beta = 5.6$	M	MeV		
κ	m_q	m _{pi}		
0.1575	123	790		
0.15755	95	684		
0.158	65	562		
0.158125	51	499		
0.15815	49	483		
0.15825	35	416		
0.1583	28	378		
0.1584	21	315		

$\beta = 5.8$, Volume= 32^364	MeV	
κ	m _q	m _{pi}
0.1543	76	600
0.15455	42	453
0.15462	31	400
0.1547	18	317
0.15475	16	275

The statistical variance of the measured value $\langle \mathscr{O} \rangle$ is,

$$\sigma^2 = 2\tau_{int}\sigma_0^2$$

For any stationary Markov chain

$$\Gamma^{\mathscr{O}}(t) = \sum_{n\geq 1} (\lambda_n)^t \mid \eta_n(\mathscr{O}) \mid^2.$$

 λ_n , are the eigenvalues of the matrix,

$$T_{x,y} = \pi_x^{\frac{1}{2}} P_{xy} \pi_y^{-\frac{1}{2}}$$

$$P_{xy} \rightarrow \text{ probability transition matrix of the Markov chain,}$$

$$\pi_x \rightarrow \text{ is the stationary distribution.}$$

 $\eta_n(\mathscr{O}) = \sum_x \mathscr{O}(x) \chi_n(x) \pi_x^{\frac{1}{2}}$ where $\chi_n(x)$ is the eigenfunction corresponding to λ_n .

 $T_{x,y}$ is positive definite. Now if the algorithm satisfies detailed balance $T_{x,y}$ is symmetric. Then by Perron-Frobenius theorem, $T_{x,y}$ has real positive eigenvalues λ_n , $n \ge 0$ with $\lambda_0 = 1$ and $|\lambda_n| < 1$ for $n \ge 1$. Hence,

$$\Gamma^{\mathscr{O}}(t) = \sum_{n \geq 1} e^{-t/\tau_n} |\eta_n(\mathscr{O})|^2$$

(日) (同) (三) (三) (三) (○) (○)

where $\tau_n = -\frac{1}{\ln \lambda_n}$. $\tau_1 = -\frac{1}{\ln \lambda_1} \rightarrow \text{exponential autocorrelation time } (\tau_{exp})$.

Q_{20}^2				
β	к	$ au_{int}$	$ au_{int}^u$	
5.6	0.158	247(27)	276(30)	
5.8	0.1543	1030(93)	1056(190)	
C(r = 12.0)				
β	к	$ au_{int}$	$ au_{int}^u$	
5.6	0.158	264(53)	314(76)	
5.8	0.1543	458(83)	850(168)	

Table: Integrated autocorrelation times (τ_{int}) and their upper bounds (τ_{int}^u) for Q_{20}^2 and C(r) in two β 's.