Multi-block/multi-core SSOR
preconditioner for the QCD quark
solver for the K computer

Ken-Ichi Ishikawa (Hiroshima Univ.)

In collaboration with

T.Boku, Y.Kuramasi, K.Minami, Y.Nakamura, F.Shoji,
D.Takahashi, M.Terai, A.Ukawa, T.Yoshie

(RIKEN-Tsukuba Joint Research)

S N

Plan of my talk

K computer
_attice QCD on K computer

Uscher’s SAP preconditioner

. Choice of the Block solver in a domain
Results

. Summary

1. K computer

e Japanese national project o icoampiey

— Developed By RIKEN and Fujitsu since 2006
— Will be provided for public via HPCl in Sep. 2012.

 QOver 10PFlops sustained speed in the LINPACK benchmark
(TOP500 @ Nov. 2011)

 QOver 80,000 nodes

— Single CPU SPARC64 VIIIfx (8core@2GHz)/ node
* (SIMD fused multiply) x (2exec)x(8core) / cycle = 128GFlops(D.P.)
» 256 FP registers/core, 6MB shared L2 cache/chip, hardware barrier.

— 6D Mesh/Torus network connected by “Tofu (Torus fusion)”
interconenct.

* Caninvolve lower (1,2,3) dimensional torus networks without network
reconnection.

* Free from single point network failure
* 3D torus x 3D mesh: 3D torus part is used to construct large 3D torus.
* Language : C,C++,Fortran

e Parallelization: MPI, OpenMP, 3D torus network for users.
2012/6/25 Lattice 2012 @Cairns 3

2. Lattice QCD on K computer

e Lattice QCD is one of the suitable application
for massively parallel supercomputer.

* |In the RIKEN-Tsukuba joint research program,
we have developed the lattice QCD program
pased on the Liuscher’s Domain-decomposed

HMC (DDHMC) algorithm (Clover quarks).

* |n this talk we present some results from the
oerformance tuning.

3. Luscher’s SAP preconditioner

e QOur target algorithm is the DDHMC algorithm (Clover
quarks).

 We tune and optimize the quark solver part.

* The quark solver uses

— Nested BiCGStab algorithm (Sakurai-Tadano)

e Quter solver : BiCGStab Double precision (with flexible
preconitioner)

* Inner solver : BiCGStab Single precision (as a preconditioner for
the outer)

— The inner solver is further perconsitioned by the Lischer’s SAP
preconditioner.

 The inner solver consumes the most of computational
time in the DDHMC algorithm.

 We tune and optimize the Single precision inner solver
performance.

2012/6/25 Lattice 2012 @Cairns

3. Luscher’s SAP preconditioner

Y

Y
Y

Y

Y

Y

Y

Y
Y

Y

Y

Y

Y

Y
Y

Y

Y

Y
A 4

Y

A

Y

\ i

Y
A

Y

|

Y

Y

Y
Y

Y

Y

Y

Y

Y
Y

Y

Y

Y

Y

|
Y

Y

Y

Y

Y

Y
Y

Y

Y

Y

A A A A A A A A A A A
Based on Even-0Odd S S S
A A A A A A A A A A A
domain A :ﬂ :ﬂ :A :A :A A =A :A :A :A g
decompOSItlon 4 fﬂ fn fn fn in A iu iu iu in f
A A A A A A A A A A A
DX:b n=n=u=u=n=u A=A=A=A=A=
A g A g A g A =A =A A =A :A =A =A >
D D A =ﬂ =A =ﬂ =A =A A =A =A =A =1l >
D — EE EO A ;A =ﬂ -;A >A -;A A =A >A -;A =A >
DOE DOO FTT T T T T T
A A A A A A A A A A A
2 Domain blocks in a NERREIIRNEREN

node. {

Even domain

6.4 size for a block. > XY, Z

D: Clover tem preconditbned Wilison - Clover Diracop.
Dcc, Dy : Evendomain(Odddomain)restricted

Y

Odd

Y
Y

domain

Dco, Do : Odd to Evendomain(Even toOdddomain)connecting

3. Luscher’s SAP preconditioner

* SAP preconditioner Mg,p~D™

— A Neuiman iteration for 1/D.

N |
M=K > (1-DK)i M2z K (DK)? = D

j=0
when |DK|<1.
— Matrix: K
e DK has a small condition number than that of D.
D.. D D.." 0
_1 DK= EE EO][EE)
K _[DEE O DOE DOO _DOO_lDOEDEO_l Doo_1
o -1 -1 -1 1-D..D..'D..D..* D..D..*
—_— D D D D — EO=~00 OE~EO EO™~00
00 “YoeYEO 00 0 1

 The linear equation is preconditioned as
Dx:b:|(DMSAP)z=b,x= MSAPZ

2012/6/25 Laiiica 20l @i

4. Choice of the Block solver in a domain

* The computational and algorithmic performance of the SAP
preconditioner depends on:
— Kernel routines : DEE’ DOO’ DEO’ DOE
— Block inversion in a domain : (DEE)‘l, (Doo)_l

« Approximate solution for (Dee)”, (Doo)” is sufficient for SAP.

— Stationary fixed iterative method (MR, Neuman..) with:

* Even/odd site preconditioning in a block (Liischer)
e SSOR with natural ordering in a block (PACS-CS) [for Single thread]

Aee z(DEE)_l’ Aoo z(Doo)_1
 The kernel routines are optimized to make use of the full
functionality of the SIMD and the many registers.

* We have to use 8-cores to achieve high efficiency for the K
computer. We extend the SSOR solver to work with the 8-core
threading.

2012/6/25 Lattice 2012 @Cairns 8

4. Choice of the Block solver in a domain

* OpenMP parallelization of the block solver.
— Even/odd site preconditioning : easy to extend to OpenMP 8

threading. — g

Y
Y

-

(1EE)ee _K(MEE)GO 1 :Jl :n A :n
A 4 3
_K(MEE)GO (1EE)OO 1 =A A A

Y

DEE —

-

Y
\

-

Y

, Even/odd site ordering
Even domain in a block

(D..)V, ~ (2e),]

(VE)o +x(M EE)oe(ZE)e All even sites are independent.
Nblk-1) 1 The site loop can be OpenMP
(ZE)e = _(1EE)ee _(DEE)eJ ((VE)e +x(M EE)eo(VE)o) parallerized. (put Open MP
=0

directives)

(DEE)ee = (1EE)ee — k" (Mgg)eo(Meg) e

4. Choice of the Block solver in a domain

 OpenMP parallelization of the block solver.

— SSOR natural ordering preconditioning : Recursive dependency in the
forward and backward substitutions when a simple natural ordering is
applied in the block.

— SSOR in LQCD [S.Fischer, A.Frommer, U.Glassner, Th.Lippert, G.Ritzenhofer,
K.Schilling, CPC 98 (1996), Th.Lippert, P.Comp. 25 (1999)]
DEE :1EE + I—EE +UEE

L. : strictly lower triangular part, U :strictly upper triangular part

(Dee) Mve =~ (1 + ok 1szlk:1[1 —(Bee)]j(l raU)t
EE E ~ EE EE EE SSOR EE EE

j=0

([SEE)SSOR - % {(lEE + a)LEE)_l []‘EE +(2- a))(lEE +al EE)_1]+ (1EE +al EE)_l}

— The Structure of LeesUee depends on the site indexing in a block.

— Theinversions (e +alee) (e +aUce)” are solved with forward or
backward substitution.

— The computational cost of (DEE)SSOR is almost identical to that of Dg
(Eisenstat trick)

4. Choice of the Block solver in a domain

 OpenMP parallelization of the block solver.

— SSOR in LQCD [S.Fischer, A.Frommer, U.Glassner, Th.Lippert, G.Ritzenhofer,
K.Schilling, CPC 98 (1996), Th.Lippert, P.Comp. 25 (1999)]

— Natural (lexicographical) ordering

— Forward and backward substitutions
— for (1EE+6d—EE)_1’(1EE+aiJEE)_1

— have recursive data dependency.

— Ex. Local solution on (1) site is used to
— construct the solution on the sites (7)
— and (2).

Natural (lexicographical)
site ordering in a block

— The data dependency makes the OpenMP threading difficult.

— Hyper plane ordering. : Task imbalance, list vector data access...
will spoil the high potentiality of the K cpu.

— Blocked natural ordering. : Our choice. [Any small block is superior to
the even/odd site ordering. Cf. Fischer et. al.]

2012/6/25 Lattice 2012@Cairns 11

4. Choice of the Block solver in a domain

* SSOR ordering for 8 core Spat'(az[') f‘jr' r;_o)tmn Spatlalé;iﬂ?iﬁil dir.
OpenMP threading.
— We divide the block into 16
sub-blocks.

— Spatial volume is split into
2x2x2 sub-bloks.
* Each block is assighed to 1
core.
— Temporal direction is
divided to 2.

e Unrolling the two blocks in
a core.

Sub-Blocked Natural (local-lexicographical)
site ordering in a block.

* Each core has the natural rt
(arrows indicate data dependency)

ordering

e Each core can solve
forward/backward substitution Ordering in a sub-block (core).
almost independently. The data dependency of the surface sites

° The surface sites of the sub- depend on the location of the sub-block.

blocks have core dependency
and load imbalance. We implement this ordering for the block solver.

2012/6/25 Lattice 2012 @Cairns 12

4. Choice of the Block solver in a domain

 We optimize the following Single precision Kernel:

(DM,)z =Db: SAP preconditoned BICGStab(dngle precision)
(DMg,p): SAP preconditbner

A-(~D.."): sub-blockedSSORiterationfor theBlockinversion.
D : Domainrestrictedoperation

Dc,, (sender). Domainconnectedoperation(senderside)

D.,, (receiver). Domainconnectedoperation(receiverside)

 We optimize them using the SIMD instructions and unrolling to fully utilize
the 256 FP registers of the SPARC64 VIIIfx CPU.

* We hide the communication of Dg,, D,z behind the computation of Dgg s Doo
 We skip the details of these optimization.

2012/6/25 Lattice 2012@Cairns 13

5. Results
* Effect of the domain solver in the SAP prec.

— We compare the three orderings for the domain solver on T2K Tsukuba (Intel CPU) before
implementing it for the K computer:
(1) Even/odd site ordering, (2)SSOR site ordering, (3)Blocked site ordering (2-sub blocks).

— Solver Tests on a quenched 1673x32 lattice

e/o-site grec'd domain solver SSOR(normal ordering) prec’d domain solver
16°x32 (block=8" 16°x32 (block=8")
102 102 -
Nblk= 1, NSAP=10 —— 1 w=1.2, Nblk= 1, NSAP=10 —+— 1
1 [Nblk= 2, NSAP=10 ——] 1 [w=1.2, Nblk= 2, NSAP=10 —+—]
10 Nblk= 4, NSAP=10] 10 ®=1.2, Nolk= 4, NSAP=10]
oy Nblk= 8, NSAP=10 —— | S 5 w=1.2, Nblk= 8, NSAP=10 —— |
5 ‘ 5 10 | ‘
x x4
o o 10
o R
_.E .E 10° F
(4] []
@ ()])
o o 107 F
2 2
£ £ 10*
107 A\
1 1 1 1 1 1 1 L \J L L L L L ‘l
0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 35 40 45 50
ifer ifer

SAP with Even/odd site preconditioned block solver has a poor performance
compared to that with the SSOR natural ordering.(Known results)
How about the sub-blocked SSOR preconditioner?

2012/6/25 Lattice 2012@Cairns 14

Inner Residual (|Dx-bl/|b])

5. Results

Effect of the domain solver in the SAP prec.

— We compare the three orderings for the domain solver on T2K Tsukuba (Intel CPU) before

implementing it for the K computer:
(1) Even/odd site ordering, (2)SSOR site ordering, (3)Blocked site ordering (2-sub blocks).

— Solver Tests on a quenched 1673x32 lattice

SSOR(normal ordering) prec’d domain solver 2 sub-blocked SSOR prec’d domain solver

2012/6/25 Lattice 2012@Cairns

16x32 (block=8" 16°x32 (block=8", sub-block=4x8°)
2
S ol s SRS
=1.2, =2, =10 —+— =1.2, =2, =10 —+
(=12, Nblke 4 NSAP=10 10+ Sub-Blocked (=12, Nblke 4, NSAP=10
w=1.2, Nblk= 8, NSAP=10 —+— 1 3 100 w=1.2, Nblk= 8, NSAP=10 —+— 1
%
- % 10 -
2t . E 102 b .
3
. T 10 ;
]
. £ 10 .
\] 108 L 4
1 1 “ 1 1 1 1 1 1 1 1 \J 1 1 \{ 1 1
0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60
iter iter
Two-sub blocking increases the iteration counts for the convergence.
The degradation is seems to be little and we can parallelize it with OpenMP.
15

5. Results

Effect of the domain solver in the SAP prec.

— We compare the three orderings for the domain solver on T2K Tsukuba (Intel CPU) before

implementing it for the K computer:
(1) Even/odd site ordering, (2)SSOR site ordering, (3)Blocked site ordering (2-sub blocks).

— Solver Tests on a quenched 1673x32 lattice

2-sub-block SSOR vs SSOR prec’d domain solver
2

10 ' SSOR, w=1.2, Nblk= 1, NSAP=10 —+—]
ol | sub-blocked SSOR, w=1.2, Nblk= 1, NSAP=10 —+— 1

Inner Residual (|Dx-b}/|b[)

iter

Two-sub blocking increases the iteration counts for the convergence.
The degradation is seems to be little and we can parallelize it with OpenMP.

We decided to implement sub-blocked SSOR for the K computer.

2012/6/25 Lattice 2012@Cairns

16

5. Results
Benchmark tests on the K computer

— We have measured the performance of the (single precision) Kernel
routines:

(DM, ,p)z =b: SAP preconditbned BiCGStab(angle precision)
(DMg,p): SAP preconditbner

A-(=Dg 1): sub-blockedSSORiterationfor theBlockinversion.
D : Domainrestrictedoperation
Dc, (sender). Domainconnectedoperation(senderside)

Dc, (receiver). Domainconnectedoperation(receiverside)

— 6”4 block size, 6”3x12 sites in a node. (fixed)

— Weak scaling test for 1223x24(16nodes), 24"3x48(256 nodes), and
4873x96 (4096 nodes) lattices. Solver iteration is fixed.

— The performance is measured with the profiler and the number
contains

* redundant fp op’s from SU(3) reconstruction and Spin projection with FMA (z,x-dirs).
* This increases the fp op’s by about 20% for hopping kernels.

5. Results

 Benchmark tests on the K computer

— SIMD rate in the executed instructions

SIMD rate of the single precision kernels

Nspp=10, Ny =1 (block size=6*, 2-blocks in a node)
100 .
AEE — A
. . . _DMgpp —v—
® Over 80% instructions are SIMDized Inner-BiCGStab —=—
and executed. < . . .
® Block restricted D, has high SIMD £ o
rate. 0 A N N
® DM;,,, and Inner-BiCGStab arewell @
SIMDized.
80 1 1 1
12%x24 243x48 48°x96
Lattice size

2012/6/25 Lattice 2012 @Cairns 18

5. Results

* Benchmark tests on the K computer

— Performance and efficiency Weak scaling

Weak scaling sustained performance of the single precision kerr Sustained efficiency of the single precision kernels
(block size =64, 2-blocks in a node). (block size =64, 2-blocks in a node).
1 06 T T T 70 T T T
DEE —— DEE ——
A —A— Agg —a—
DMgap —v— 7 DMgap —v
o . 5 | Inner-BiCGStab ~ —=—] & 60 ¢ Inner-BiCGStab —a—
g 10 100T >
i _E o o o
G 2 S0
Q4 T
2 10 0
@ o
E S 40 |
B E A A A
5 103 2 - B
x16 g 30}
r\ r\ v —i —a
.1 02 3| 3| 3| 20 3| 3| 3|
127°x24 247x48 487x96 127°x24 247x48 487x96
Lattice size Lattice size

® Performance weak scaling is good. Efficiency is kept at ~¥26% for the inner solver.
® Domain restricted Kernel D, has over 50 % efficiency. This number contains
redundant fp op’s from SU(3) reconstruction and spin projection with FMA. Effective
flops is multiplied by x 0.8.

® Efficiency reduction for A, comes from the load imbalance of the
forward/backward solvers in the sub-blocked SSOR. Tradeoff between efficiency and
dependency (parallelism).

2012/6/25 Lattice 2012 @Cairns 19

6. Summary

The blocked SSOR preconditioner still has a good property as a
preconditioner than the even/odd-site preconditioner.

We have implemented the blocked SSOR for the SAP domain solver
for the K computer.

With the blocked SSOR we could utilize the 8-cores of the K
computer with the OpenMP threading.

After optimizing the single precision kernels of the quark solver
using basic techniques (SIMDization, loop unrolling), we
benchmarked the solver kernels on the K computer.

Results

— The domain restricted kernel (D) has 50% efficiency of the peak
performance.

— The blocked SSOR kernel (A;) has a less efficiency due to the load
imbalance.

— The total performance of the single precision BiCGStab solver is at ~26%
efficiency and scales ideally in the weak scaling test.

Full code optimization (including Double precision part) almost
completes. Benchmarking has not yet been done.

Backups

* Communication hiding using
— MPI_Isend/MPI_lIrecv/MPI_Wait
— in the SAP preconditioner DM,

Communication hiding

The SAP preconditioner is built up with the DK operation.

We tune the DK performance further using the communication hiding

technique.
Overlap the computation

The domain connecting operation can .
and communication

be done simultaneously with the domain . -1
: : Xg = DEE Ye
restricted operation.
W=DyXc (send)
DK multiplication on a vector y D
v=(DK)y [Ve = DeeXe | 1
U f =Dgexe (recv)
—D -1 » W= yO B f
Xe =Uee Ye 1
Xo =Doo "W

Xo = Doo_l(YO — DOEXE)
Vg = DEEXE + DEOXO
Vo = Dooxo + DOEXE

W= DX, (send)

| Vo =DooXo + f | l
Ve =Vg +DgoXy (recv)

2012/6/25 Lattice 2012 @Cairns

