Lattice investigation of the tetraquark candidates $a_0(980)$ and κ

Jan Daldrop, Constantia Alexandrou, Marco Cristoforetti, Mattia Dalla Brida, Mario Gravina, Luigi Scorzato, Carsten Urbach, Marc Wagner

ETM Collaboration

Helmholtz-Institut für Strahlen- und Kernphysik Rheinische Friedrich-Wilhelms-Universität Bonn

29.6.2012

Tetraquarks with lattice QCD

Introduction – Light scalar mesons

Do light scalar mesons have exotic (four-quark) components?

• Hints at four-quark bound states for $f_0(600)$, κ observed recently with lattice QCD

S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu, N. Mathur, D. Mohler, Phys. Rev. D 82, 094507 (2010)

Introduction

The correct way (very challenging!)

• Problem: a_0 instable in QCD \longrightarrow resonance not directly accessible

$$a_0 \longrightarrow \eta \pi, \bar{K}K$$

- Study volume dependence of energy levels
- Use extension of Lüscher's finite size method

Goal of this project

• Do we observe a candidate for a bound four-quark state?

29.6.2012 3 / 17

Methods

- Interpolating operators
- Extraction of energies

3 Results

- Simulation details
- a_0 four-quark analysis
- κ four-quark analysis

4 Conclusions and Outlook

Interpolating operators

Interpolating operators

 $\label{eq:constraint} \mathsf{Diquark}~(\bar{\mathbf{3}}_c,\bar{\mathbf{3}}_f)~\mathsf{anti-diquark}~[q(\boldsymbol{x})\Gamma q(\boldsymbol{x})]_a\,[\bar{q}(\boldsymbol{x})\Gamma\bar{q}(\boldsymbol{x})]_a$

Mesonic molecule

Two mesons

 $(q(\boldsymbol{x})\Gamma\bar{q}(\boldsymbol{x}))(q(\boldsymbol{y})\Gamma\bar{q}(\boldsymbol{y}))$

 $(q(\boldsymbol{x})\Gamma\bar{q}(\boldsymbol{x}))(q(\boldsymbol{x})\Gamma\bar{q}(\boldsymbol{x}))$

Exploratory study: neglect disconnected contributions

- Jacobi and APE smearing
- Valence quark content for $a_0(980)^+$: $\bar{d}s\bar{s}u$ \longrightarrow molecules: $\eta_s\pi$, $K\bar{K}$
- Valence quark content for κ : $\sum_{q=u,d,s} \bar{s}q\bar{q}u$ \longrightarrow molecule: $K\pi$

S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu, N. Mathur, D. Mohler, Phys. Rev. D 82, 094507 (2010)

・ロト ・ 日 ト ・ ヨ ト ・

Spectroscopy on the lattice – Four-quark states

How to handle four-quark correlators?

Spectroscopy on the lattice - Four-quark states

How to handle four-quark correlators?

- More diagrams for $a_0(980)$ if one includes $\eta_s \pi$ molecule $(\bar{s}\gamma_5 s)(\bar{d}\gamma_5 u)$
- More diagrams for κ
- Possible extensions

Automatic code generation

- Start from analytic correlator
- Apply Wick's theorem
- Sort according to Dirac indices and write as traces
- Generate the corresponding C++ code

Extraction of energies

• Solve the generalized eigenvalue problem for $C_{ij}(t)$ $C(t)\vec{u}^n(t) = \lambda^n(t,t_0)C(t_0)\vec{u}^n(t).$

$$\Rightarrow \lambda^n(t) \longrightarrow e^{-E_n(t-t_0)} + \mathcal{O}(e^{-E_{n+1}(t-t_0)})$$

- Single particle state correction:
 - For a diagonal correlator $C_{ii}(t)$

$$C_{ii}(t) \longrightarrow |A_i^n|^2 \left[e^{-E_n t} + e^{-E_n (T-t)} \right] + |C_i^n|^2 \left[e^{-m_1 t} e^{-m_2 (T-t)} + e^{-m_2 t} e^{-m_1 (T-t)} \right]$$

 E_n : two-particle state energy, $m_1,\ m_2$: single-particle masses W. Detmold, K. Orginos, M. Savage, A. Walker-Loud, Phys. Rev. D 78, 054514 (2008)

Apply to generalized eigenvalues

$$\lambda^{n}(t) \approx a_{n} \left[e^{-E_{n}t} + e^{-E_{n}(T-t)} \right]$$

+ $c_{n} \left[e^{-m_{1}t}e^{-m_{2}(T-t)} + e^{-m_{2}t}e^{-m_{1}(T-t)} \right]$

S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu, N. Mathur, D. Mohler, Phys. Rev. D 82, 094507

Results - Simulation details

- Twisted mass $N_f = 2 + 1 + 1$ fermions (ETMC) ETMC, R. Baron *et al.*, JHEP 06, 111 (2010)
- Mixed action approach (Osterwalder-Seiler)
 - Different regularization for valence and sea strange quarks

R. Frezzotti, G. Rossi, JHEP 10, 070 (2004)

- Connected-only
- Jacobi and APE smearing

Simulation parameters				
	$a[{ m fm}]$	$L[{ m fm}]$	m_{π^+} [MeV]	N_{conf}
A30.32	0.086	2.8	280	1313
A40.24	0.086	2.0	330	1259
A40.20	0.086	1.7	340	500
A80.24	0.086	2.0	460	1225

Effective masses of $\lambda^n(t, t_0)$ for $a_0^+ = (\bar{d}s\bar{s}u)$ (Four-quark interpolators only, 6×6 , A30.32)

 $(a = 0.086 \text{ fm}, (L/a)^3 \times (T/a) = 32^3 \times 64, m_{\pi^+} \approx 280 \text{ MeV} N_{\text{conf}} = 1313)$

No addidtional state observed

Jan Daldrop (University of Bonn, HISKP)

Tetraquarks with lattice QCD

Effective masses of $\lambda^n(t, t_0)$ for $a_0^+ = (\bar{d}s\bar{s}u)$ (Four-quark interpolators only, 5×5 , A30.32) Corrected for single-kaon states

29.6.2012 10 / 17

Effective masses of $\lambda^n(t, t_0)$ for $a_0^+ = (\bar{d}s\bar{s}u)$ (4 × 4, A40.20) Two-meson states included

29.6.2012 11 / 17

Eigenvectors of $C_{ij}(t)$ (4 × 4, A40.20) Two-meson states included

Correlator dominated by two-meson states!

Jan Daldrop (University of Bonn, HISKP)

29.6.2012 13 / 17

Results – κ four-quark analysis

Effective masses of $\lambda^n(t, t_0)$ for $\kappa = \sum_{q=u,d,s} (\bar{s}q\bar{q}u)$ (Four-quark interpolators only, 5×5 , A30.32)

No addidtional state observed

Jan Daldrop (University of Bonn, HISKP)

Tetraquarks with lattice QCD

29.6.2012 14 / 17

- Diquark anti-diquark, meson molecule and two-meson operators studied in the a_0 and κ channels
- We observe states close to the non-interacting scattering states
- No additional (bound) states observed for a_0 or κ
- κ result in contradiction to previous N_f = 2 calculation
 S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K. F. Liu, N. Mathur, D. Mohler, Phys. Rev. D 82, 094507 (2010)

Outlook

- Resonance does not need to correspond to an energy level in finite volume
- Calculate overlap of two- and four-quark states on the lattice

- Study volume dependence of energy levels
- Use extension of Lüscher's finite size method

Thank you for your attention.