Gradient flow and scale setting for twisted mass fermions

Albert Deuzeman Urs Wenger

University of Bern

The XXX International Symposium on Lattice Field Theory Cairns QLD, Australia

The gradient flow method

Workflow

Define

$$rac{\partial}{\partial t}V_t(x,\mu) = -g^2\left[rac{\partial}{\partial_{x,\mu}}S(V_t)
ight]V_t(x,\mu),$$

with the boundary condition $V_0 = U(x, \mu)$.

Intregrate this differential equation numerically through

$$V_{t+\epsilon}(x,\mu) = \exp\left[\epsilon T^a \partial_{x,\mu}^a P\left(V_t(x,\mu)\right)\right] V_t(x,\mu).$$

• Calculate observables $\langle \mathcal{O} \rangle_t \equiv \langle \mathcal{O} (V_t (x \mu)) \rangle$.

See also talks by Stefan Schaefer, Thorsten Kurth and Daniel Nogradi.

 u°

- Has a well-defined perturbative expansion.
- Observables are renormalized along the flow [Lüscher, JHEP 08 (2010) 071].
- Moves towards a (local) minimum of the gauge action.
- Equivalent to repeated infinitesimal (reversible) smearing steps. \rightarrow Useful in defining smeared operators.
- Fictitious time t defines a renormalization scale $\Lambda \propto \sqrt{t}$.
- Useful for scale setting purposes.

Scale from energy density

A. Deuzeman (University of Bern)

Gradient flow for twisted mass

BMW's proposal: w₀

A. Deuzeman (University of Bern)

Lattice 2012 5 / 19

The quantity w₀...

- ... is cheap to calculate.
- ... is straightforward to determine precisely.
- ... introduces negligible systematic error from fitting.

BMW's results [BMW, arXiv:1203.4469v1]

Value in the continuum, at the physical quark mass (from m_{Ω})

 $w_0 = 0.1755(18)(04) \, {\rm fm}$

Measured with $N_f = 2 + 1$, consistent under change of fermion action.

BMW: consistent for different actions

[BMW, arXiv:1203.4469v1]

Ensembles used

Re-analysis of published ensembles

 $N_f = 2$ [JHEP 08 (2010) 97]

tree-level Symanzik improved gauge action. $\beta = 3.90$ (SB), 4.05 (SC) $m_{\rm ps} = 291 - 646$ MeV (SB), 325 - 634 MeV (SC) L = 1.90 - 2.52 fm (SB), 2.02 fm (SC) $m_{\rm ps}L = 3.7 - 6.2$ (SB), 3.3 - 6.5 (SC),

$N_f = 2 + 1 + 1$ [PoS LAT2010 (2010) 123]

Iwasaki gauge action. $\beta = 1.90$ (IA), 1.95 (IB), 2.10 (ID) $m_{\rm ps} = 285 - 512$ MeV (IA), 269 - 489 MeV (IB), 228 - 394 MeV (IC) L = 2.06 - 2.75 fm (IA), 2.50 fm (IB), 1.94 - 2.91 fm (IC) $m_{\rm ps}L = 4.0 - 4.8$ (IA), 3.4 - 5.8 (IB), 3.4 - 4.7 (IC)

Finite volume effects on w_0

 $L \approx 1.34 - 1.90 ~{
m fm}$ $m_{
m ps} \approx 300 - 330 ~{
m MeV}$ ${f u}^b$ Finite volume effects negligible for all reasonable volumes...

A. Deuzeman (University of Bern)

Gradient flow for twisted mass

Autocorrelation issues

The suppression of UV fluctuations systematically exposes large autocorrelations. Errors easily underestimated!

A. Deuzeman (University of Bern)

Gradient flow for twisted mass

Lattice 2012 10 / 19

Autocorrelation issues

The suppression of UV fluctuations systematically exposes large autocorrelations. Errors easily underestimated!

A. Deuzeman (University of Bern)

Gradient flow for twisted mass

 \mathbf{n}^{b}

Autocorrelation issues

The suppression of UV fluctuations systematically exposes large autocorrelations. Errors easily underestimated!

A. Deuzeman (University of Bern)

Gradient flow for twisted mass

Lattice 2012 10 / 19

First attempt – just plug in the value provided!

	a_{w_0}	a_{f_π}
$N_f = 2$	0.080(1) fm	0.064 fm
	0.104(3) fm	0.079 fm
	0.124(3) fm	0.086 fm
$N_f = 2 + 1 + 1$	0.068(1) fm	0.060 fm
	0.093(2) fm	0.078 fm
	0.107(1) fm	0.086 fm

Disagreement between previous scale setting from pion decay constant. Large chiral and/or lattice spacing artifacts?

Chiral extrapolation of w_0

The chiral extrapolation is ambiguous. Use non-extrapolated value instead.

A. Deuzeman (University of Bern)

Gradient flow for twisted mass

 u^{\flat}

Chiral dynamics and w₀

Chiral fits done separately – obtain $w_0 f_{\rm DS}$ at the physical point.

 u^{\flat}

Gradient flow for twisted mass

Chiral dynamics and w₀

Chiral fits done separately – obtain $w_0 f_{\rm ps}$ at the physical point.

Lattice artifacts in w₀

Comparison using other scales

Mild dependence in a^2 at most for r_0 , t_0 dominated by discretisation effors.

UNIVERSITÄT

Chiral susceptibility from gradient flow

 \bullet Smooth configurations \to ${\it F}{\it \tilde{F}}$ charge definition.

• Renormalization properties imply $V\chi_t$ 'invariant' under gradient flow.

A. Deuzeman (University of Bern)

Gradient flow for twisted mass

 \mathbf{n}^{p}

Chiral susceptibility suppressed?

Little indication of suppressed susceptibility in chiral limit. Little indication of topological slowing down, either!

A. Deuzeman (University of Bern)

Gradient flow for twisted mass

Inconsistent results...

Different susceptibility definitions disagree - situation unclear.

 u^{\flat}

Conclusions

W₀

- Large auto-correlations make measurements less precise than they may seem.
- Extrapolation to the chiral limit could introduce a large systematic error.
- Lattice artifacts are not negligible, complicating scale setting

Topological susceptibility

- Gradient flow definition of topological charge appears to satisfy renormalization conditions.
- Auto-correlation of topological charge is not the largest in the system.
- No topological slowing down seen in simulations.
- Different definitions remain in disagreement.