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Motivation for chirally rotated SF (χSF)

In the continuum limit the χSF is equivalent to the SF with 2 (4,6,...)
fermions

⇒ obtain 2 different lattice regularizations of the SF!

Main advantage of χSF: compatibility with automatic O(a)
improvement in the bulk after proper tuning of zf (dimension 3
boundary counterterm)

⇒ bulk O(a) improvement of step-scaling functions without csw and
operator improvement (cA, cV,...); interesting both for QCD and for
technicolor models

Universality relations offer new ways to determine finite
renormalization constants otherwise fixed by Ward identities (ZA,
ZP/ZS,...) & bulk improvement coefficients (csw, cA,cV,...)

Need perturbation theory for consistency checks & to develop
non-perturbative strategies & to improve non-perturbative data
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SF boundary conditions and chiral rotations

Consider isospin doublets ψ′ and ψ
′

satisfying homogeneous SF boundary
conditions (P± = 1

2(1± γ0),

P+ψ
′(x)|x0=0 = 0, P−ψ

′(x)|x0=T = 0,

ψ
′
(x)P−|x0=0 = 0, ψ

′
(x)P+|x0=T = 0.

perform a chiral field rotation,

ψ′ = exp(iαγ5τ
3/2)ψ, ψ

′
= ψ exp(iαγ5τ

3/2),

the rotated fields satisfy chirally rotated boundary conditions

P+(α)ψ(x)|x0=0 = 0, P−(α)ψ(x)|x0=T = 0,

ψ(x)γ0P−(α)|x0=0 = 0, ψ(x)γ0P+(α)|x0=T = 0,

with the projectors

P±(α) = 1
2

[
1± γ0 exp(iαγ5τ

3)
]
.
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SF boundary conditions and chiral rotations

P±(α) = 1
2

[
1± γ0 exp(iαγ5τ

3)
]
.

Special case α = pi/2:

P±(π/2) ≡ Q̃± = 1
2(1± iγ0γ5τ

3) ≡ diag(Q±,Q∓),

The chiral rotation introduces a mapping between correlation functions:

〈O[ψ, ψ̄]〉(P±) = 〈Õ[ψ, ψ̄]〉(P±(α))

with Õ[ψ, ψ̄] = O
[
exp(iαγ5τ

3/2)ψ, ψ̄ exp(iαγ5τ
3/2
]

where SF boundary quark and anti-quark fields are included by replacing

ζ̄(x)↔ ψ̄(0, x)P+ ζ(x)↔ P−ψ(0, x)
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SF vs. χSF correlation functions

Consider 2-point functions with quark bilinear operators
X f1f2(x) (X = A0,P,V0,S):

Standard SF correlators:

fX(x0) = −1
2〈X

f1f2(x)Of2f1
5 〉(P±), Of1f2

5 = a6
∑
y,z

ζ f1(y)γ5P−ζf2(z)

χSF correlators, main difference: two-point functions now depend on
the flavour indices

g f1f2
X (x0) = −1

2〈X
f1f2(x)Qf2f1

5,±〉(Q̃+)

Boundary sources defined such that they rotate into the standard SF
sources:

Quu′
5 = a6

∑
y,z

ζu(y)γ0γ5Q−ζu′(z), Qud
5 = a6

∑
y,z

ζu(y)γ5Q+ζd(z)
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Dictionary: SF ↔ χSF correlation functions

Chiral rotation by α = π/2; 4 possibilities: f1f2 = uu′, dd ′, ud , du;
assume existence of a second doublet (u′, d ′) ⇒ no disconnected
diagrams

Non-vanishing correlations functions with pseudo-scalar source

fA = guu′
A = −igud

V , fP = iguu′
S = gud

P ,

All other correlation functions vanish by parity or flavour symmetries!

fS = iguu′
P = gud

S = 0 = fV = guu′
V = −igud

A ,

use standard SF as “physical basis” ⇒ parity and flavour symmetries
take a chirally rotated form in χSF basis, e.g. parity:

P5 :

{
ψ(x) → iγ0γ5τ

3ψ(x0,−x),

ψ(x) → −ψ(x0,−x)iγ0γ5τ
3
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χSF on the lattice & counterterms

• Replace DW → DW + δDW ,

δDWψ(x) = (δx0,0 + δx0,T )
[
(zf − 1) + (ds − 1) aDs

]
ψ(x).

Ds = 1
2(∇k +∇∗k)γk .

• Parameterize the basic fermionic 2-point functions, e.g.

[ψ(x)ζ(y)]F = S(x ; a, y)U0(0, y)†
(
1− d̄saD

←
s

)
Q̃− ,

[ζ(x)ψ(y)]F = Q̃−
(
1 + d̄saDs

)
U0(0, x)S(a, x; y) ,

• Renormalize the quark boundary fields:

ζR = Zζζ, ζR = Zζζ, ζ ′R = Zζζ
′, ζ ′R = Zζζ

′,
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Some observations

As usual one needs to tune the bare mass m0 to mcr by imposing the
conservation of the axial current, e.g.

∂̃0g
ud
A (x0)|x0=T/2 = 0

The correlation functions g f1f2
X are either even or odd under parity P5

P5-odd correlation functions must vanish for parity to be restored
⇒ tuning condition for zf , as the zf -counterterm is P5-odd:∫

d3 xψ(x)ψ(x) → −
∫

d3xψ(x0,−x)(iγ0γ5τ
3)2ψ(x0,−x)

= −
∫

d3xψ(x)ψ(x)

Tuning condition for zf , example:

gud
A (x0)|x0=T/2 = 0

Proper choice of m0 = mcr and zf ⇒ parity and flavour symmetries
are restored.
Mechanism of automatic O(a) improvement:
• P5-even functions have bulk lattice artefacts of O(a2n)
• P5-odd functions have bulk lattice artefacts of O(a2n+1)
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Some observations

N.B. This counting of powers of a does not apply to boundary O(a)
counterterms:
• boundary O(a) counterterms ∝ ct and ∝ ds are P5-even
• boundary O(a) counterterms ∝ d̄s is P5-odd

Universality relations:

ZAZ
2
ζ g

uu′
A (x0) = −iZVZ

2
ζ g

ud
V (x0) ⇒ ZA/ZV =

−igud
V (x0)

guu′
A (x0)

Question: How is ZA/ZV affected by cutoff effects?

P5-odd correlators should have no O(a) with correct Symanzik
improvement:

guu′
P (x0) = a(d̄s − d̄s

∗
)guu′

P (x0)ins,b + a(csw− c∗sw)guu′
P (x0)ins,v +O(a2)

⇒ improvement conditions to fix csw, d̄s , cV, cA,....
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Tuning of m0 and zf at tree-level (with P. Vilaseca)

Expand in PT: gX = g
(0)
X + g2

0 g
(1)
X + ...

We set T = L and θ = π/5, csw = 0, with the standard SU(3) abelian
background field (fund. fermions) Impose simultaneously

∂0g
ud
A (x0)(0)|x0=T/2 = 0, gud

A (T/2)(0) = 0

for given L/a = 4, 5, 6... ⇒ m
(0)
cr (L/a) , z

(0)
f (L/a)

Results:

L/a am
(0)
cr (L/a) z

(0)
f (L/a)

6 −0.035243 1.07693
8 −0.020020 1.05344

12 −0.008969 1.03154

N.B. No solution is found for L/a = 4, 5!
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Sensitivity to the definition of zf and m0 = mcr

O(a) uncertainty in zf and mcr leads to O(a2) variation in P5-even
correlators:

Change zf → zf + ∆zf and m0 → m0 + ∆m0 and treat ∆’s as O(a)
insertions of P5-odd operators

⇒ require at least double insertion to get P5-even correlation function

⇒ O(a2) effect in the correlators.
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Cutoff effects in ZA/ZV

guu′
A and gud

V are P5-even correlators.

Hence, no contribution from P5-odd counterterms at O(a)

Only O(a) effects come from P5-even O(a) boundary counterterms
∝ ct, ds

universality ⇒ counterterm insertions the same up to O(a2)

⇒ determination of ZA/ZV up to O(a2) uncertainty

Consistent with non-perturbative data
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Non-perturbative (quenched) determination of ZA,
(with B. Leder)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

 

 

g20

Z
A

L = 1.436r0

cSW = 0, tw
cSW = NP , std
cSW = NP , tw

Stefan Sint The chirally rotated Schrödinger Functional 14 / 16



Difference to ZA from Ward identity (ALPHA ’96) vs. a2
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Conclusions

χSF provides a useful alternative regularisation of the SF with Wilson
quarks

No bulk O(a) effects, reduced sensitivity to the definition of the chiral
limit

but requires tuning of zf ; necessitates L/a > 5!

implementation for techicolor models almost finished (P. Vilaseca,
S. S. A. Rago, A. Patella)

Perturbation theory to one-loop (without background field) available
soon; will provide some non-trivial checks of general expectations.
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