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Motivation for chirally rotated SF (xSF)

@ In the continuum limit the xSF is equivalent to the SF with 2 (4,6,...)

fermions
= obtain 2 different lattice regularizations of the SF!

@ Main advantage of xSF: compatibility with automatic O(a)
improvement in the bulk after proper tuning of z¢ (dimension 3
boundary counterterm)

= bulk O(a) improvement of step-scaling functions without ¢ and
operator improvement (ca, cy,...); interesting both for QCD and for
technicolor models

@ Universality relations offer new ways to determine finite
renormalization constants otherwise fixed by Ward identities (Z4,
Zp/Zs,...) & bulk improvement coefficients (csw, ca,cv,...)

@ Need perturbation theory for consistency checks & to develop
non-perturbative strategies & to improve non-perturbative data
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SF boundary conditions and chiral rotations

Consider isospin doublets ¢’ and @l satisfying homogeneous SF boundary
conditions (Py = 3(1 £ ),

Pt/ (x)lx=0 = 0, P! () o1 = O,

¥ ()P_|x=0 =0, 0 (X)Py g7 = 0.
perform a chiral field rotation,

Y = exp(iow57—3/2)¢7 @' - @exp(iory57-3/2)’

the rotated fields satisfy chirally rotated boundary conditions

Pi(a)i(x)lx=0 =0,  P(@)p()lo=T =0,

P(x)70P—(@)]x=0 = 0, Y(x) 0Py (a)lx=T =0,

with the projectors

Pi(a) = 5 [1£y0exp(iarsT)] .
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SF boundary conditions and chiral rotations

Pi(a) = 3 [1 +yoexp(iaysT?)] .

Special case oo = pi/2:
Pi(m/2) = Qe = 3(1+ i0757°) = diag(Qx, Q)
The chiral rotation introduces a mapping between correlation functions:
(01, 9]) (py) = (0L, ¥]) (ps(ay)
with Oy, ] = O [exp(iarsT?/2), 1 exp(iarsT?/2]

where SF boundary quark and anti-quark fields are included by replacing

C(x) & 9(0,x)Py  ((x) ¢ P-1(0,x)
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SF vs. xSF correlation functions

Consider 2-point functions with quark bilinear operators
X% (x) (X = Ao, P, Vo, S):

@ Standard SF correlators:

fx(x0) = _%<Xﬁf2(X)O5f2f1>(pi), (’)'53'(2 _— szl(y)%P_Cfé(z)
y,Z

@ XSF correlators, main difference: two-point functions now depend on
the flavour indices

gt (x0) = —3(XAR()QE1) 4.,

Boundary sources defined such that they rotate into the standard SF
sources:

o = &) G0 (w(2), Q=2 (,(¥)15Qila(2)
MY/

Yz
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Dictionary: SF <> xSF correlation functions

o Chiral rotation by o = 7/2; 4 possibilities: fif, = ud',dd’, ud, du;
assume existence of a second doublet (v, d") = no disconnected
diagrams

@ Non-vanishing correlations functions with pseudo-scalar source

/ . ud . / d
fa=gx" =—igy’,  fo=igs" =g,
@ All other correlation functions vanish by parity or flavour symmetries!
fo=igh" =g{= 0 =Ff =gy =—igh

@ use standard SF as “physical basis” = parity and flavour symmetries
take a chirally rotated form in xSF basis, e.g. parity:

Py - P(x) = inoysTY(x0, —X),
() = —d(x0, —x)i0ysT
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xSF on the lattice & counterterms

e Replace Dy — Dw + 6Dy,

SDW(x) = (5xp0 + 0x.7) [(zf 1)+ (de — 1) aDS} W(x).
Ds = %(vk"i_v);)ﬁ)/k-

e Parameterize the basic fermionic 2-point functions, e.g.

[)CWF = S(x:a,y)Uo(0,y)! (1 — d:aDy) G-,
[Kx)P(y)]lF = Q- (1+ dsaDs) Up(0,%)S(a,x;y),

e Renormalize the quark boundary fields:

CR - ZC{; ZR = ZCZa Ci{ - chla Zi% = Zczla
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Some observations

@ As usual one needs to tune the bare mass mg to m¢; by imposing the
conservation of the axial current, e.g.

5 _ud

90847 (x0)|xo=7/2 =0
@ The correlation functions ggﬁ are either even or odd under parity Ps
@ Ps-odd correlation functions must vanish for parity to be restored

= tuning condition for z¢, as the zf-counterterm is Ps-odd:
/d3 xP(x)P(x) — —/d3xw(xo,—x)(i’yo’y57'3)2w(xo,—x)
—— [ 0o

@ Tuning condition for zf, example:

d
8A°(x0)xp=7/2 =10
@ Proper choice of mg = mc, and zf = parity and flavour symmetries

are restored.
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Some observations

e N.B. This counting of powers of a does not apply to boundary O(a)
counterterms:
e boundary O(a) counterterms o ¢; and  ds are Ps-even
e boundary O(a) counterterms o ds is Ps-odd

Universality relations:

—igd?(x0)

ZpNZ2gh" (x0) = —iZvZ2gi(x0) = Zn/Zv=—0)
g4 (x0)

Question: How is Zy /Zy affected by cutoff effects?

Ps-odd correlators should have no O(a) with correct Symanzik
improvement:

glgu’ (XO) = a(JS - Js*)glgu,(XO)ins,b + a(csw - CS*W)glgu, (XO)ins,v + 0(32)

= improvement conditions to fix ey, ds, Cv, Ca,....
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Tuning of my and z¢ at tree-level (with P. Vilaseca)

@ Expand in PT: gx = gg’) -I-ggg)((l) + ..

@ Weset T =L and § =x/5, ¢ = 0, with the standard SU(3) abelian
background field (fund. fermions) Impose simultaneously

90859 (x0) V=72 =0,  gd(T/2)® =0

for given L/a =4,5,6... = m,g?)(L/a) : z}o)(L/a)

@ Results:
L/a | am®(L/a) | 20(L/a)
6 | —0.035243 | 1.07693

8 | —0.020020 | 1.05344
12 | —0.008969 | 1.03154

e N.B. No solution is found for L/a = 4, 5!
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Sensitivity to the definition of zr and mg = my,

e O(a) uncertainty in zf and me; leads to O(a?) variation in Ps-even
correlators:

e Change zr — zf + Azf and mg — mg + Amg and treat A's as O(a)
insertions of Ps-odd operators

= require at least double insertion to get Ps-even correlation function

= 0O(a?) effect in the correlators.
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Cutoff effects in Zy /Zy

° g/‘i”' and g\‘}d are Ps-even correlators.
@ Hence, no contribution from Ps-odd counterterms at O(a)
@ Only O(a) effects come from Ps-even O(a) boundary counterterms
X G, ds
@ universality = counterterm insertions the same up to O(a?)
= determination of Zs/Zy up to O(a?) uncertainty

o Consistent with non-perturbative data

Stefan Sint The chirally rotated Schrédinger Functional 13 /16



Non-perturbative (quenched) determination of Zy,
(with B. Leder)

08r 0O cow =0, tw Oh
—csw = NP, std '

X cgw = NP, tw
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Difference to Zy from Ward identity (ALPHA '96) vs.

L = 1.436r¢
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Conclusions

@ \SF provides a useful alternative regularisation of the SF with Wilson
quarks

@ No bulk O(a) effects, reduced sensitivity to the definition of the chiral
limit
@ but requires tuning of zf; necessitates L/a > 5!

@ implementation for techicolor models almost finished (P. Vilaseca,
S. S. A. Rago, A. Patella)

@ Perturbation theory to one-loop (without background field) available
soon; will provide some non-trivial checks of general expectations.
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