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Non-trivial θ-vacuum effects in the 2-d O(3) model

Introduction

Motivation

Open questions in the 2d O(3) model
Vacuum angle θ in the continuum:

S [~e] =
1

2g2

∫
d2x ∂µ~e · ∂µ~e + iθQ[~e], ~e(x) ∈ S2

Q[~e] =
1

8π

∫
d2x εµν~e · (∂µ~e × ∂ν~e) ∈ Π2(S2)

Asymptotically free

Instantons, θ-vacua

Sign problem, eiπQ = (−1)Q

The conjectured exact S-matrix implies
A. B. Zamolodchikov and V. A. Fateev, Sov. Phys. JETP 63 (1986) 913.

θ = 0: non-perturbatively generated mass gap m = 8
e
ΛMS

θ = π: WZNW model as low-energy effective field theory, m = 0

Is the exact S-matrix theory correct from lattice first principles?

Is θ renormalized non-pertubatively?
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Introduction

Motivation

Finite volume approach

Exact S-Matrix solved in finite volume

Determine the step scaling function:

σ(2,m(L) · L) = m(2L) · 2L

L ξ(L) = 1
m(L)

L′ = 2L ξ(2L) = 1
m(2L)

θ = 0 : σ(2,m(L) · L = 1.0595) = 1.2612103
J. Balog and A. Hegedus, J. Phys. A 37 (2004) 1881.

θ = π : σ(2,m(L) · L = 1.0595) = 1.231064
J. Balog, private communication.

Simulation on the lattice
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The formulation on the lattice

The 2d lattice O(3) model

The 2d lattice O(3) model

Z (θ) =

∫
D~e e−S[~e] eiθQ[~e]

x

~ex

all field configurations of ~ex ∈ S2

Z =

∫
D~e e−S[~e]

Topological charge

Each site x has a spin ~ex ∈ S2

Action with nearest-neighbor coupling S [~e] =
∑
〈xy〉

s(~ex ,~ey )

Add θ combined with the topological charge
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The formulation on the lattice

The θ term

The topological charge Z (θ) =

∫
D~e e−S[~e] eiθQ[~e]

x y

z

~ex

~ey

~ez

Triangulate the lattice

Triangle 〈xyz〉 7−→ ~ex ,~ey ,~ez ∼ oriented area A〈xyz〉/4π = q〈xyz〉
B. Berg and M. Lüscher, Nucl. Phys. B 190, (1981) 412.

Q[~e] =
∑
〈xyz〉

q〈xyz〉 ∈ Z
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The formulation on the lattice

Dislocations

Problem: dislocations

Instantons

Field configurations [~e] with

Q = 1

minimal action S [~e]

Sinst[~e] = 4π/g2

M. Lüscher, Nucl. Phys. B 200
(1982) 61.

Dislocations on the lattice
Q = 1

minimum of lattice action S [~e]

for standard action
Sdisloc[~e] = 6.69 . . . /g2

< 4π/g2

Topological susceptibility χt

χt = 〈Q2〉
V

is ultra-violet divergent:

Logarithmic divergence in
the continuum

Depending on the dislocation
action, one may expect a
power-law divergence on the lattice
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The formulation on the lattice

The action

Different lattice actions Z (θ) =

∫
D~e e−S[~e] eiθQ[~e]

Action S [~e] =
∑
〈xy〉

s(~ex ,~ey )

δ → π :

Standard action s(~ex ,~ey ) = − 1
g2~ex · ~ey

g2 →∞ :

Topological action s(~ex ,~ey ) =

{
0 ~ex · ~ey > cos δ
∞ else

δ is the maximally allowed angle between
neighboring spins

Optimized constraint action s(~ex ,~ey ) =

{
− 1

g2~ex · ~ey ~ex · ~ey > cos δ

∞ else

The constraint angle δ needs to be adjusted.
Can choose δ such that cut-off effects are
minimized.
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The formulation on the lattice

Observables

Correlation function

L

t1 t2S(t1, t2)

C (t1 − t2, θ) =
1

Z (t1, t2, θ)

∫
D~e ~E (t1) · ~E (t2) e−S[~e] eiθQ(t1,t2)

∼ e−m(θ,L)(t2−t1)

~E (t) =
∑
x1

~ex1,t , Z (t1, t2, θ) =
∫
D~e e−S[~e] eiθQ(t1,t2)
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Monte Carlo results

Step scaling function

Cut-off effects

1.25

1.255

1.26

1.265

1.27

1.275

1.28

1.285

0 0.02 0.04 0.06 0.08 0.1 0.12

Σ
(2
,m

(L
)L
,a
/L

)

a/L

Standard action

Constraint action

Topological action

Σ(2,m(L)L, a/L) = σ(2,m(L)L)

+ a2

L2 [B log3(L/a) + C log2(L/a) + . . .]

J. Balog, F. Niedermayer, and P. Weisz, Phys. Lett. B676 (2009) 188

Cut-off effects of the step scaling function Σ(2,m(L)L = 1.0595, a/L)

Fit

Fit

Analytic continuum result

θ = 0
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Monte Carlo results

Mass gap

Continuum theory for 0 ≤ θ ≤ π

1.046

1.048

1.05

1.052
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1.058
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0 π/4 π/2 3π/4 π

L
m

(θ
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θ

Mass gap Lm(θ, L) at Lm(θ, L) = 1.0595 using the constraint action

L/a = 24

Analytic continuum result
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Non-trivial θ-vacuum effects in the 2-d O(3) model

Conclusion and outlook

Conclusion and Outlook

Conclusion

We saw that θ is a relevant parameter, each value of θ corresponds
to a different continuum theory

Dislocations do not spoil the continuum limit

We can confirm the exact S-matrix prediction at θ = 0, π

Optimized constraint action has very small cut-off effects

The modified Hasenbusch improved estimator allowed to reach very
high accuracy

Outlook

Simulate gauge theories at θ = π

Implementation of the optimized constraint action for O(N)

Implementation of the optimized constraint action for
Yang-Mills theories
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Backup

Hasenbusch improved estimator

Modified Hasenbusch improved estimator

t t+1

Use free boundary conditions in t direction

Rotate all spins after timeslice t

−→ Action only changes between timeslice t and t + 1

Integrate over all rotations, weighted with the action

Integration can not be done analytically

Modification1: Only average over 4 rotation matrices

Modification2: Incorporate θ-term

Allows to extract very high precision data
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Backup

The correlation function

Correlation function

Correlation between ~E (t1) and ~E (t2).
~E (t) is the average spin in timeslice t.

Partition function of stripe Z (t1, t2, θ) =

∫
D~e e−S[~e] eiθQ(t1,t2)

C (t1 − t2, θ) =
〈
~E (t1) · ~E (t2)

〉
θ

=
1

Z (t1, t2, θ)

∫
D~e ~E (t1) · ~E (t2) e−S[~e] eiθQ(t1,t2)

Numerically, we calculate

C (t1 − t2, θ) = C(t1−t2,θ)Z(t1,t2,θ)/Z(0)
Z(t1,t2,θ)/Z(0) =

〈~E(t1)·~E(t2) eiθQ(t1,t2)〉
θ=0

〈eiθQ(t1,t2)〉
θ=0

Define Q(t1, t2) =
∑

〈xyz〉∈S(t1,t2)

q〈xyz〉, non integer
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Correlation function

Correlation between ~E (t1) and ~E (t2).
~E (t) is the average spin in timeslice t.

Partition function of stripe Z (t1, t2, θ) =

∫
D~e e−S[~e] eiθQ(t1,t2)

C (t1 − t2, θ) =
〈
~E (t1) · ~E (t2)

〉
θ

=
1

Z (t1, t2, θ)

∫
D~e ~E (t1) · ~E (t2) e−S[~e] eiθQ(t1,t2)

Numerically, we calculate
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The step scaling function Σ

Consider the correlation function at fixed θ = θ0: C (t, θ0)

Calculate exponential mass: C (t, θ0) ∼ e−m(θ0,L)t

Define quantity: u0 = m(θ0, L) · L

Adjust until for example: u0 ≈ 1.0595

Measure on the double size lattice: u1 = m(θ, 2L) · 2L

Given L, u0: Σ(2, u0, a/L) = u0

Continuum limit: σ(2, u0) = lim
a/L→0

Σ(2, u0, a/L)
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